THE GENERIC FIBRE OF MODULI SPACES OF BOUNDED LOCAL G-SHTUKAS
Moduli spaces of bounded local G-shtukas are a group-theoretic generalisation of the function field analogue of Rapoport and Zink’s moduli spaces of p-divisible groups. In this article we generalise some very prominent concepts in the theory of Rapoport-Zink spaces to our setting. More precisely, we...
Gespeichert in:
Veröffentlicht in: | Journal of the Institute of Mathematics of Jussieu 2023-03, Vol.22 (2), p.799-878 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 878 |
---|---|
container_issue | 2 |
container_start_page | 799 |
container_title | Journal of the Institute of Mathematics of Jussieu |
container_volume | 22 |
creator | Hartl, Urs Viehmann, Eva |
description | Moduli spaces of bounded local G-shtukas are a group-theoretic generalisation of the function field analogue of Rapoport and Zink’s moduli spaces of p-divisible groups. In this article we generalise some very prominent concepts in the theory of Rapoport-Zink spaces to our setting. More precisely, we define period spaces, as well as the period map from a moduli space of bounded local G-shtukas to the corresponding period space, and we determine the image of the period map. Furthermore, we define a tower of coverings of the generic fibre of the moduli space, which is equipped with a Hecke action and an action of a suitable automorphism group. Finally, we consider the
$\ell $
-adic cohomology of these towers. Les espaces de modules de G-chtoucas locaux bornés sont une généralisation des espaces de modules de groupes p-divisibles de Rapoport-Zink, au cas d’un corps de fonctions local, pour des groupes plus généraux et des copoids pas nécessairement minuscules. Dans cet article nous définissons les espaces de périodes et l’application de périodes associés à un tel espace, et nous calculons son image. Nous étudions la tour au-dessus de la fibre générique de l’espace de modules, équipée d’une action de Hecke ainsi que d’une action d’un groupe d’automorphismes. Enfin, nous définissons la cohomologie
$\ell $
-adique de ces tours. |
doi_str_mv | 10.1017/S1474748021000293 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2785070778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1474748021000293</cupid><sourcerecordid>2785070778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-7ad9d81b2dbc6086da301c4bab874945b7859f7d3a28ac93a827f3b7eb75415f3</originalsourceid><addsrcrecordid>eNp1kE9PwkAQxTdGExH9AN428Vyd3W2Z7cEDlC00VmooPTe7_WMgIriFA9_eRUg8GDOHmbx5vzfJEHLP4JEBw6ec-ehKAmcAwENxQXpOCjwBAi5_Zt877q_JTdetnGXAA9Yjz4upohM1U_MkonEymiuaxfQ1GxdpQvO3YaTyozDKitlYjWmaRcOUTrx8uihehvktuWr1R9fcnXufFLFaRFMvzSaJc3qVYLjzUNdhLZnhtakGIAe1FsAq32gj0Q_9wKAMwhZrobnUVSi05NgKg43BwGdBK_rk4ZS7tZuvfdPtytVmbz_dyZI7FhAQpXOxk6uym66zTVtu7XKt7aFkUB6_VP75kmPEmdFrY5f1e_Mb_T_1Df8oYX0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785070778</pqid></control><display><type>article</type><title>THE GENERIC FIBRE OF MODULI SPACES OF BOUNDED LOCAL G-SHTUKAS</title><source>Cambridge University Press Journals Complete</source><creator>Hartl, Urs ; Viehmann, Eva</creator><creatorcontrib>Hartl, Urs ; Viehmann, Eva</creatorcontrib><description>Moduli spaces of bounded local G-shtukas are a group-theoretic generalisation of the function field analogue of Rapoport and Zink’s moduli spaces of p-divisible groups. In this article we generalise some very prominent concepts in the theory of Rapoport-Zink spaces to our setting. More precisely, we define period spaces, as well as the period map from a moduli space of bounded local G-shtukas to the corresponding period space, and we determine the image of the period map. Furthermore, we define a tower of coverings of the generic fibre of the moduli space, which is equipped with a Hecke action and an action of a suitable automorphism group. Finally, we consider the
$\ell $
-adic cohomology of these towers. Les espaces de modules de G-chtoucas locaux bornés sont une généralisation des espaces de modules de groupes p-divisibles de Rapoport-Zink, au cas d’un corps de fonctions local, pour des groupes plus généraux et des copoids pas nécessairement minuscules. Dans cet article nous définissons les espaces de périodes et l’application de périodes associés à un tel espace, et nous calculons son image. Nous étudions la tour au-dessus de la fibre générique de l’espace de modules, équipée d’une action de Hecke ainsi que d’une action d’un groupe d’automorphismes. Enfin, nous définissons la cohomologie
$\ell $
-adique de ces tours.</description><identifier>ISSN: 1474-7480</identifier><identifier>EISSN: 1475-3030</identifier><identifier>DOI: 10.1017/S1474748021000293</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Automorphisms ; Homology ; Modules</subject><ispartof>Journal of the Institute of Mathematics of Jussieu, 2023-03, Vol.22 (2), p.799-878</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>The Author(s), 2021. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-7ad9d81b2dbc6086da301c4bab874945b7859f7d3a28ac93a827f3b7eb75415f3</citedby><cites>FETCH-LOGICAL-c317t-7ad9d81b2dbc6086da301c4bab874945b7859f7d3a28ac93a827f3b7eb75415f3</cites><orcidid>0000-0003-1431-7810</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1474748021000293/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Hartl, Urs</creatorcontrib><creatorcontrib>Viehmann, Eva</creatorcontrib><title>THE GENERIC FIBRE OF MODULI SPACES OF BOUNDED LOCAL G-SHTUKAS</title><title>Journal of the Institute of Mathematics of Jussieu</title><addtitle>J. Inst. Math. Jussieu</addtitle><description>Moduli spaces of bounded local G-shtukas are a group-theoretic generalisation of the function field analogue of Rapoport and Zink’s moduli spaces of p-divisible groups. In this article we generalise some very prominent concepts in the theory of Rapoport-Zink spaces to our setting. More precisely, we define period spaces, as well as the period map from a moduli space of bounded local G-shtukas to the corresponding period space, and we determine the image of the period map. Furthermore, we define a tower of coverings of the generic fibre of the moduli space, which is equipped with a Hecke action and an action of a suitable automorphism group. Finally, we consider the
$\ell $
-adic cohomology of these towers. Les espaces de modules de G-chtoucas locaux bornés sont une généralisation des espaces de modules de groupes p-divisibles de Rapoport-Zink, au cas d’un corps de fonctions local, pour des groupes plus généraux et des copoids pas nécessairement minuscules. Dans cet article nous définissons les espaces de périodes et l’application de périodes associés à un tel espace, et nous calculons son image. Nous étudions la tour au-dessus de la fibre générique de l’espace de modules, équipée d’une action de Hecke ainsi que d’une action d’un groupe d’automorphismes. Enfin, nous définissons la cohomologie
$\ell $
-adique de ces tours.</description><subject>Automorphisms</subject><subject>Homology</subject><subject>Modules</subject><issn>1474-7480</issn><issn>1475-3030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9PwkAQxTdGExH9AN428Vyd3W2Z7cEDlC00VmooPTe7_WMgIriFA9_eRUg8GDOHmbx5vzfJEHLP4JEBw6ec-ehKAmcAwENxQXpOCjwBAi5_Zt877q_JTdetnGXAA9Yjz4upohM1U_MkonEymiuaxfQ1GxdpQvO3YaTyozDKitlYjWmaRcOUTrx8uihehvktuWr1R9fcnXufFLFaRFMvzSaJc3qVYLjzUNdhLZnhtakGIAe1FsAq32gj0Q_9wKAMwhZrobnUVSi05NgKg43BwGdBK_rk4ZS7tZuvfdPtytVmbz_dyZI7FhAQpXOxk6uym66zTVtu7XKt7aFkUB6_VP75kmPEmdFrY5f1e_Mb_T_1Df8oYX0</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Hartl, Urs</creator><creator>Viehmann, Eva</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1431-7810</orcidid></search><sort><creationdate>20230301</creationdate><title>THE GENERIC FIBRE OF MODULI SPACES OF BOUNDED LOCAL G-SHTUKAS</title><author>Hartl, Urs ; Viehmann, Eva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-7ad9d81b2dbc6086da301c4bab874945b7859f7d3a28ac93a827f3b7eb75415f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automorphisms</topic><topic>Homology</topic><topic>Modules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hartl, Urs</creatorcontrib><creatorcontrib>Viehmann, Eva</creatorcontrib><collection>Cambridge University Press Wholly Gold Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hartl, Urs</au><au>Viehmann, Eva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE GENERIC FIBRE OF MODULI SPACES OF BOUNDED LOCAL G-SHTUKAS</atitle><jtitle>Journal of the Institute of Mathematics of Jussieu</jtitle><addtitle>J. Inst. Math. Jussieu</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>22</volume><issue>2</issue><spage>799</spage><epage>878</epage><pages>799-878</pages><issn>1474-7480</issn><eissn>1475-3030</eissn><abstract>Moduli spaces of bounded local G-shtukas are a group-theoretic generalisation of the function field analogue of Rapoport and Zink’s moduli spaces of p-divisible groups. In this article we generalise some very prominent concepts in the theory of Rapoport-Zink spaces to our setting. More precisely, we define period spaces, as well as the period map from a moduli space of bounded local G-shtukas to the corresponding period space, and we determine the image of the period map. Furthermore, we define a tower of coverings of the generic fibre of the moduli space, which is equipped with a Hecke action and an action of a suitable automorphism group. Finally, we consider the
$\ell $
-adic cohomology of these towers. Les espaces de modules de G-chtoucas locaux bornés sont une généralisation des espaces de modules de groupes p-divisibles de Rapoport-Zink, au cas d’un corps de fonctions local, pour des groupes plus généraux et des copoids pas nécessairement minuscules. Dans cet article nous définissons les espaces de périodes et l’application de périodes associés à un tel espace, et nous calculons son image. Nous étudions la tour au-dessus de la fibre générique de l’espace de modules, équipée d’une action de Hecke ainsi que d’une action d’un groupe d’automorphismes. Enfin, nous définissons la cohomologie
$\ell $
-adique de ces tours.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1474748021000293</doi><tpages>80</tpages><orcidid>https://orcid.org/0000-0003-1431-7810</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1474-7480 |
ispartof | Journal of the Institute of Mathematics of Jussieu, 2023-03, Vol.22 (2), p.799-878 |
issn | 1474-7480 1475-3030 |
language | eng |
recordid | cdi_proquest_journals_2785070778 |
source | Cambridge University Press Journals Complete |
subjects | Automorphisms Homology Modules |
title | THE GENERIC FIBRE OF MODULI SPACES OF BOUNDED LOCAL G-SHTUKAS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T14%3A46%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20GENERIC%20FIBRE%20OF%20MODULI%20SPACES%20OF%20BOUNDED%20LOCAL%20G-SHTUKAS&rft.jtitle=Journal%20of%20the%20Institute%20of%20Mathematics%20of%20Jussieu&rft.au=Hartl,%20Urs&rft.date=2023-03-01&rft.volume=22&rft.issue=2&rft.spage=799&rft.epage=878&rft.pages=799-878&rft.issn=1474-7480&rft.eissn=1475-3030&rft_id=info:doi/10.1017/S1474748021000293&rft_dat=%3Cproquest_cross%3E2785070778%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785070778&rft_id=info:pmid/&rft_cupid=10_1017_S1474748021000293&rfr_iscdi=true |