GPU simulations of spiking neural P systems on modern web browsers
In this work we present a novel and proof of concept Spiking Neural P system (for short, SN P systems) simulator that runs on modern web browsers whilst using graphics processing units (for short, GPUs). By creating an SN P system that both utilizes the GPU and runs on modern web browsers, we allow...
Gespeichert in:
Veröffentlicht in: | Natural computing 2023-03, Vol.22 (1), p.171-180 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180 |
---|---|
container_issue | 1 |
container_start_page | 171 |
container_title | Natural computing |
container_volume | 22 |
creator | Valdez, Arian Allenson M. Wee, Filbert Odasco, Ayla Nikki Lorreen Rey, Matthew Lemuel M. Cabarle, Francis George C. |
description | In this work we present a novel and proof of concept Spiking Neural P system (for short, SN P systems) simulator that runs on modern web browsers whilst using graphics processing units (for short, GPUs). By creating an SN P system that both utilizes the GPU and runs on modern web browsers, we allow a much more performant SN P simulator that would also be a lot more accessible for researchers to experiment with, and can be integrated into other tools or visualizations transparently without having to learn specific GPU knowledge or techniques. Using previous results on representing SN P system computations using linear algebra, we analyze and implement a computation simulation algorithm on web browsers that runs on the GPU. Since web browsers (at this time) do not have any capabilities for General Purpose computing on GPUs (for short, GPGPU), we exploit the Web Graphics Library (for short, WebGL) and create shaders to generate textures that correspond to computational results of our SN P simulation algorithm. To our knowledge, this is the first work on simulating SN P systems on browser GPUs. Here, we present two different implementations and algorithms as case studies to analyse and compare the performance of the simulations, with particular interest in speedup compared to CPU approaches. |
doi_str_mv | 10.1007/s11047-022-09914-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2785007841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785007841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-762f9d64e7ea86ab77990c86631c903155261eb53303c0226045e30826cbe3a33</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEmPwBThF4hyIkzZ_jjDBQJrEDuwcpV06daztiFtN-_ZkFIkbJ1vye8_2j5Bb4PfAuX5AAJ5pxoVg3FrIGJyRCeRaMKutOj_1SjNtwFySK8Qt5wLyHCbkab5cUaybYef7umuRdhXFff1ZtxvahiH6HV1SPGIfmjRradOtQ2zpIRS0iN0BQ8RrclH5HYab3zolq5fnj9krW7zP32aPC1ZKsD3TSlR2rbKggzfKF1pby0ujlITScpnOEQpCkUvJZZkeUTzLg-RGqLII0ks5JXdj7j52X0PA3m27IbZppRPa5AmDySCpxKgqY4cYQ-X2sW58PDrg7sTKjaxcWuF-WLmTSY4mTOJ2E-Jf9D-ub9Isako</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785007841</pqid></control><display><type>article</type><title>GPU simulations of spiking neural P systems on modern web browsers</title><source>SpringerLink Journals</source><creator>Valdez, Arian Allenson M. ; Wee, Filbert ; Odasco, Ayla Nikki Lorreen ; Rey, Matthew Lemuel M. ; Cabarle, Francis George C.</creator><creatorcontrib>Valdez, Arian Allenson M. ; Wee, Filbert ; Odasco, Ayla Nikki Lorreen ; Rey, Matthew Lemuel M. ; Cabarle, Francis George C.</creatorcontrib><description>In this work we present a novel and proof of concept Spiking Neural P system (for short, SN P systems) simulator that runs on modern web browsers whilst using graphics processing units (for short, GPUs). By creating an SN P system that both utilizes the GPU and runs on modern web browsers, we allow a much more performant SN P simulator that would also be a lot more accessible for researchers to experiment with, and can be integrated into other tools or visualizations transparently without having to learn specific GPU knowledge or techniques. Using previous results on representing SN P system computations using linear algebra, we analyze and implement a computation simulation algorithm on web browsers that runs on the GPU. Since web browsers (at this time) do not have any capabilities for General Purpose computing on GPUs (for short, GPGPU), we exploit the Web Graphics Library (for short, WebGL) and create shaders to generate textures that correspond to computational results of our SN P simulation algorithm. To our knowledge, this is the first work on simulating SN P systems on browser GPUs. Here, we present two different implementations and algorithms as case studies to analyse and compare the performance of the simulations, with particular interest in speedup compared to CPU approaches.</description><identifier>ISSN: 1567-7818</identifier><identifier>EISSN: 1572-9796</identifier><identifier>DOI: 10.1007/s11047-022-09914-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Artificial Intelligence ; Complex Systems ; Computer Science ; Evolutionary Biology ; Graphics processing units ; Linear algebra ; Processor Architectures ; Simulation ; Spiking ; Theory of Computation ; Web browsers</subject><ispartof>Natural computing, 2023-03, Vol.22 (1), p.171-180</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-762f9d64e7ea86ab77990c86631c903155261eb53303c0226045e30826cbe3a33</citedby><cites>FETCH-LOGICAL-c319t-762f9d64e7ea86ab77990c86631c903155261eb53303c0226045e30826cbe3a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11047-022-09914-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11047-022-09914-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Valdez, Arian Allenson M.</creatorcontrib><creatorcontrib>Wee, Filbert</creatorcontrib><creatorcontrib>Odasco, Ayla Nikki Lorreen</creatorcontrib><creatorcontrib>Rey, Matthew Lemuel M.</creatorcontrib><creatorcontrib>Cabarle, Francis George C.</creatorcontrib><title>GPU simulations of spiking neural P systems on modern web browsers</title><title>Natural computing</title><addtitle>Nat Comput</addtitle><description>In this work we present a novel and proof of concept Spiking Neural P system (for short, SN P systems) simulator that runs on modern web browsers whilst using graphics processing units (for short, GPUs). By creating an SN P system that both utilizes the GPU and runs on modern web browsers, we allow a much more performant SN P simulator that would also be a lot more accessible for researchers to experiment with, and can be integrated into other tools or visualizations transparently without having to learn specific GPU knowledge or techniques. Using previous results on representing SN P system computations using linear algebra, we analyze and implement a computation simulation algorithm on web browsers that runs on the GPU. Since web browsers (at this time) do not have any capabilities for General Purpose computing on GPUs (for short, GPGPU), we exploit the Web Graphics Library (for short, WebGL) and create shaders to generate textures that correspond to computational results of our SN P simulation algorithm. To our knowledge, this is the first work on simulating SN P systems on browser GPUs. Here, we present two different implementations and algorithms as case studies to analyse and compare the performance of the simulations, with particular interest in speedup compared to CPU approaches.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Complex Systems</subject><subject>Computer Science</subject><subject>Evolutionary Biology</subject><subject>Graphics processing units</subject><subject>Linear algebra</subject><subject>Processor Architectures</subject><subject>Simulation</subject><subject>Spiking</subject><subject>Theory of Computation</subject><subject>Web browsers</subject><issn>1567-7818</issn><issn>1572-9796</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9PwzAMxSMEEmPwBThF4hyIkzZ_jjDBQJrEDuwcpV06daztiFtN-_ZkFIkbJ1vye8_2j5Bb4PfAuX5AAJ5pxoVg3FrIGJyRCeRaMKutOj_1SjNtwFySK8Qt5wLyHCbkab5cUaybYef7umuRdhXFff1ZtxvahiH6HV1SPGIfmjRradOtQ2zpIRS0iN0BQ8RrclH5HYab3zolq5fnj9krW7zP32aPC1ZKsD3TSlR2rbKggzfKF1pby0ujlITScpnOEQpCkUvJZZkeUTzLg-RGqLII0ks5JXdj7j52X0PA3m27IbZppRPa5AmDySCpxKgqY4cYQ-X2sW58PDrg7sTKjaxcWuF-WLmTSY4mTOJ2E-Jf9D-ub9Isako</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Valdez, Arian Allenson M.</creator><creator>Wee, Filbert</creator><creator>Odasco, Ayla Nikki Lorreen</creator><creator>Rey, Matthew Lemuel M.</creator><creator>Cabarle, Francis George C.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20230301</creationdate><title>GPU simulations of spiking neural P systems on modern web browsers</title><author>Valdez, Arian Allenson M. ; Wee, Filbert ; Odasco, Ayla Nikki Lorreen ; Rey, Matthew Lemuel M. ; Cabarle, Francis George C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-762f9d64e7ea86ab77990c86631c903155261eb53303c0226045e30826cbe3a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Complex Systems</topic><topic>Computer Science</topic><topic>Evolutionary Biology</topic><topic>Graphics processing units</topic><topic>Linear algebra</topic><topic>Processor Architectures</topic><topic>Simulation</topic><topic>Spiking</topic><topic>Theory of Computation</topic><topic>Web browsers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valdez, Arian Allenson M.</creatorcontrib><creatorcontrib>Wee, Filbert</creatorcontrib><creatorcontrib>Odasco, Ayla Nikki Lorreen</creatorcontrib><creatorcontrib>Rey, Matthew Lemuel M.</creatorcontrib><creatorcontrib>Cabarle, Francis George C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Natural computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valdez, Arian Allenson M.</au><au>Wee, Filbert</au><au>Odasco, Ayla Nikki Lorreen</au><au>Rey, Matthew Lemuel M.</au><au>Cabarle, Francis George C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GPU simulations of spiking neural P systems on modern web browsers</atitle><jtitle>Natural computing</jtitle><stitle>Nat Comput</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>22</volume><issue>1</issue><spage>171</spage><epage>180</epage><pages>171-180</pages><issn>1567-7818</issn><eissn>1572-9796</eissn><abstract>In this work we present a novel and proof of concept Spiking Neural P system (for short, SN P systems) simulator that runs on modern web browsers whilst using graphics processing units (for short, GPUs). By creating an SN P system that both utilizes the GPU and runs on modern web browsers, we allow a much more performant SN P simulator that would also be a lot more accessible for researchers to experiment with, and can be integrated into other tools or visualizations transparently without having to learn specific GPU knowledge or techniques. Using previous results on representing SN P system computations using linear algebra, we analyze and implement a computation simulation algorithm on web browsers that runs on the GPU. Since web browsers (at this time) do not have any capabilities for General Purpose computing on GPUs (for short, GPGPU), we exploit the Web Graphics Library (for short, WebGL) and create shaders to generate textures that correspond to computational results of our SN P simulation algorithm. To our knowledge, this is the first work on simulating SN P systems on browser GPUs. Here, we present two different implementations and algorithms as case studies to analyse and compare the performance of the simulations, with particular interest in speedup compared to CPU approaches.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11047-022-09914-1</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1567-7818 |
ispartof | Natural computing, 2023-03, Vol.22 (1), p.171-180 |
issn | 1567-7818 1572-9796 |
language | eng |
recordid | cdi_proquest_journals_2785007841 |
source | SpringerLink Journals |
subjects | Algorithms Artificial Intelligence Complex Systems Computer Science Evolutionary Biology Graphics processing units Linear algebra Processor Architectures Simulation Spiking Theory of Computation Web browsers |
title | GPU simulations of spiking neural P systems on modern web browsers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A42%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GPU%20simulations%20of%20spiking%20neural%20P%20systems%20on%20modern%20web%20browsers&rft.jtitle=Natural%20computing&rft.au=Valdez,%20Arian%20Allenson%20M.&rft.date=2023-03-01&rft.volume=22&rft.issue=1&rft.spage=171&rft.epage=180&rft.pages=171-180&rft.issn=1567-7818&rft.eissn=1572-9796&rft_id=info:doi/10.1007/s11047-022-09914-1&rft_dat=%3Cproquest_cross%3E2785007841%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785007841&rft_id=info:pmid/&rfr_iscdi=true |