Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models

ChatGPT is attracting a cross-field interest as it provides a language interface with remarkable conversational competency and reasoning capabilities across many domains. However, since ChatGPT is trained with languages, it is currently not capable of processing or generating images from the visual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
Hauptverfasser: Wu, Chenfei, Yin, Shengming, Qi, Weizhen, Wang, Xiaodong, Tang, Zecheng, Duan, Nan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wu, Chenfei
Yin, Shengming
Qi, Weizhen
Wang, Xiaodong
Tang, Zecheng
Duan, Nan
description ChatGPT is attracting a cross-field interest as it provides a language interface with remarkable conversational competency and reasoning capabilities across many domains. However, since ChatGPT is trained with languages, it is currently not capable of processing or generating images from the visual world. At the same time, Visual Foundation Models, such as Visual Transformers or Stable Diffusion, although showing great visual understanding and generation capabilities, they are only experts on specific tasks with one-round fixed inputs and outputs. To this end, We build a system called \textbf{Visual ChatGPT}, incorporating different Visual Foundation Models, to enable the user to interact with ChatGPT by 1) sending and receiving not only languages but also images 2) providing complex visual questions or visual editing instructions that require the collaboration of multiple AI models with multi-steps. 3) providing feedback and asking for corrected results. We design a series of prompts to inject the visual model information into ChatGPT, considering models of multiple inputs/outputs and models that require visual feedback. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models. Our system is publicly available at \url{https://github.com/microsoft/visual-chatgpt}.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2784999903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2784999903</sourcerecordid><originalsourceid>FETCH-proquest_journals_27849999033</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwCsssLk3MUXDOSCxxDwixUghJzMnOzEvXUXApSiwHMhQS81IUXFMyS0Ds8sySDAWoDrf80ryUxJLM_DwF3_yU1JxiHgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzK3MLEEAgNjY-JUAQA19zvk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784999903</pqid></control><display><type>article</type><title>Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models</title><source>Free E- Journals</source><creator>Wu, Chenfei ; Yin, Shengming ; Qi, Weizhen ; Wang, Xiaodong ; Tang, Zecheng ; Duan, Nan</creator><creatorcontrib>Wu, Chenfei ; Yin, Shengming ; Qi, Weizhen ; Wang, Xiaodong ; Tang, Zecheng ; Duan, Nan</creatorcontrib><description>ChatGPT is attracting a cross-field interest as it provides a language interface with remarkable conversational competency and reasoning capabilities across many domains. However, since ChatGPT is trained with languages, it is currently not capable of processing or generating images from the visual world. At the same time, Visual Foundation Models, such as Visual Transformers or Stable Diffusion, although showing great visual understanding and generation capabilities, they are only experts on specific tasks with one-round fixed inputs and outputs. To this end, We build a system called \textbf{Visual ChatGPT}, incorporating different Visual Foundation Models, to enable the user to interact with ChatGPT by 1) sending and receiving not only languages but also images 2) providing complex visual questions or visual editing instructions that require the collaboration of multiple AI models with multi-steps. 3) providing feedback and asking for corrected results. We design a series of prompts to inject the visual model information into ChatGPT, considering models of multiple inputs/outputs and models that require visual feedback. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models. Our system is publicly available at \url{https://github.com/microsoft/visual-chatgpt}.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chatbots ; Editing ; Feedback ; Languages</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wu, Chenfei</creatorcontrib><creatorcontrib>Yin, Shengming</creatorcontrib><creatorcontrib>Qi, Weizhen</creatorcontrib><creatorcontrib>Wang, Xiaodong</creatorcontrib><creatorcontrib>Tang, Zecheng</creatorcontrib><creatorcontrib>Duan, Nan</creatorcontrib><title>Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models</title><title>arXiv.org</title><description>ChatGPT is attracting a cross-field interest as it provides a language interface with remarkable conversational competency and reasoning capabilities across many domains. However, since ChatGPT is trained with languages, it is currently not capable of processing or generating images from the visual world. At the same time, Visual Foundation Models, such as Visual Transformers or Stable Diffusion, although showing great visual understanding and generation capabilities, they are only experts on specific tasks with one-round fixed inputs and outputs. To this end, We build a system called \textbf{Visual ChatGPT}, incorporating different Visual Foundation Models, to enable the user to interact with ChatGPT by 1) sending and receiving not only languages but also images 2) providing complex visual questions or visual editing instructions that require the collaboration of multiple AI models with multi-steps. 3) providing feedback and asking for corrected results. We design a series of prompts to inject the visual model information into ChatGPT, considering models of multiple inputs/outputs and models that require visual feedback. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models. Our system is publicly available at \url{https://github.com/microsoft/visual-chatgpt}.</description><subject>Chatbots</subject><subject>Editing</subject><subject>Feedback</subject><subject>Languages</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwCsssLk3MUXDOSCxxDwixUghJzMnOzEvXUXApSiwHMhQS81IUXFMyS0Ds8sySDAWoDrf80ryUxJLM_DwF3_yU1JxiHgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzK3MLEEAgNjY-JUAQA19zvk</recordid><startdate>20230308</startdate><enddate>20230308</enddate><creator>Wu, Chenfei</creator><creator>Yin, Shengming</creator><creator>Qi, Weizhen</creator><creator>Wang, Xiaodong</creator><creator>Tang, Zecheng</creator><creator>Duan, Nan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230308</creationdate><title>Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models</title><author>Wu, Chenfei ; Yin, Shengming ; Qi, Weizhen ; Wang, Xiaodong ; Tang, Zecheng ; Duan, Nan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27849999033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chatbots</topic><topic>Editing</topic><topic>Feedback</topic><topic>Languages</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Chenfei</creatorcontrib><creatorcontrib>Yin, Shengming</creatorcontrib><creatorcontrib>Qi, Weizhen</creatorcontrib><creatorcontrib>Wang, Xiaodong</creatorcontrib><creatorcontrib>Tang, Zecheng</creatorcontrib><creatorcontrib>Duan, Nan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Chenfei</au><au>Yin, Shengming</au><au>Qi, Weizhen</au><au>Wang, Xiaodong</au><au>Tang, Zecheng</au><au>Duan, Nan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models</atitle><jtitle>arXiv.org</jtitle><date>2023-03-08</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>ChatGPT is attracting a cross-field interest as it provides a language interface with remarkable conversational competency and reasoning capabilities across many domains. However, since ChatGPT is trained with languages, it is currently not capable of processing or generating images from the visual world. At the same time, Visual Foundation Models, such as Visual Transformers or Stable Diffusion, although showing great visual understanding and generation capabilities, they are only experts on specific tasks with one-round fixed inputs and outputs. To this end, We build a system called \textbf{Visual ChatGPT}, incorporating different Visual Foundation Models, to enable the user to interact with ChatGPT by 1) sending and receiving not only languages but also images 2) providing complex visual questions or visual editing instructions that require the collaboration of multiple AI models with multi-steps. 3) providing feedback and asking for corrected results. We design a series of prompts to inject the visual model information into ChatGPT, considering models of multiple inputs/outputs and models that require visual feedback. Experiments show that Visual ChatGPT opens the door to investigating the visual roles of ChatGPT with the help of Visual Foundation Models. Our system is publicly available at \url{https://github.com/microsoft/visual-chatgpt}.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2784999903
source Free E- Journals
subjects Chatbots
Editing
Feedback
Languages
title Visual ChatGPT: Talking, Drawing and Editing with Visual Foundation Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Visual%20ChatGPT:%20Talking,%20Drawing%20and%20Editing%20with%20Visual%20Foundation%20Models&rft.jtitle=arXiv.org&rft.au=Wu,%20Chenfei&rft.date=2023-03-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2784999903%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784999903&rft_id=info:pmid/&rfr_iscdi=true