Performance comparison of thermal power generation‐organic Rankine cycle combined cycle system for ships waste heat utilization under different bottom cycle ratios

Waste heat recovery technology has gained popularity due to its ability to save energy for both financial and environmental reasons. In this article, a new technology, thermal power generation (TEG)‐organic Rankine cycle (ORC) combined cycle system, is proposed to recycle cascaded waste heat of ship...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental progress 2023-03, Vol.42 (2), p.n/a
Hauptverfasser: Li, Huaan, Liu, Changxin, Xu, Zhenhong, Liu, Jianhao, Du, Zhenyu, Li, Mengze, Dong, Jingming, Han, Zhitao, Xu, Minyi, Pan, Xinxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Environmental progress
container_volume 42
creator Li, Huaan
Liu, Changxin
Xu, Zhenhong
Liu, Jianhao
Du, Zhenyu
Li, Mengze
Dong, Jingming
Han, Zhitao
Xu, Minyi
Pan, Xinxiang
description Waste heat recovery technology has gained popularity due to its ability to save energy for both financial and environmental reasons. In this article, a new technology, thermal power generation (TEG)‐organic Rankine cycle (ORC) combined cycle system, is proposed to recycle cascaded waste heat of ships. The bottom cycle ratios are an important parameter affecting the combined cycle system, but its effect under more working conditions is unknown. Therefore, keeping the evaporator pressure at 0.7 MPa, the environmental‐friendly R245fa working fluid is employed to implement an experimental study on the variation law of the main performance parameters such as the system power output (Wnet), the system thermal efficiency (ηs), power‐production cost (Cg), and waste heat utilization of main engine flue gas (fg) under different TEG/ORC bottom cycle ratios (BCR). At the same time, the TEG‐ORC combined cycle system's performance of the R22 and R245fa is compared. With the increase of the BCR, the Wnet, ηs, and fg increase, but the Cg of the system decreases. When the BCR is 0.885, the Wnet, ηs, Cg, and the rate of fg is 688.4 W, 9.09%, 0.5194 $/kWh, and 85.07%, respectively. This study provides a reference for the clarification and further optimization of the TEG‐ORC combined cycle mechanism.
doi_str_mv 10.1002/ep.13993
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2784876563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2784876563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2933-b56f0a9ec31cb6da0d7d1dcbc043a7546067c27581190209745e4ae44a36b01e3</originalsourceid><addsrcrecordid>eNp1kd1KwzAUgIsoOKfgIwS88aYzadJ2uZThHwwcotclTU-3zDapScqYVz6CL-GL-STGdXjn1fnhO9-Bc6LonOAJwTi5gm5CKOf0IBoRzlicsxQf_uUsOY5OnFtjnFHG-Sj6WoCtjW2FloCkaTthlTMamRr5FYR-gzqzAYuWoMEKr4z-_vg0dim0kuhJ6Felw-BWNrvxMlTVvnRb56FFwY7cSnUObURooBUIj3qvGvW-06FeV8FfqboGC9qj0nhv2r1kt9KdRke1aByc7eM4erm9eZ7dx_PHu4fZ9TyWCac0LtOsxoKDpESWWSVwlVekkqXEjIo8ZRnOcpnk6ZQQjhPMw22ACWBM0KzEBOg4uhi8nTVvPThfrE1vdVhZJPmUTfMszWigLgdKWuOchbrorGqF3RYEF79PKKArdk8IaDygG9XA9l-uuFkM_A9gY4zt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784876563</pqid></control><display><type>article</type><title>Performance comparison of thermal power generation‐organic Rankine cycle combined cycle system for ships waste heat utilization under different bottom cycle ratios</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Huaan ; Liu, Changxin ; Xu, Zhenhong ; Liu, Jianhao ; Du, Zhenyu ; Li, Mengze ; Dong, Jingming ; Han, Zhitao ; Xu, Minyi ; Pan, Xinxiang</creator><creatorcontrib>Li, Huaan ; Liu, Changxin ; Xu, Zhenhong ; Liu, Jianhao ; Du, Zhenyu ; Li, Mengze ; Dong, Jingming ; Han, Zhitao ; Xu, Minyi ; Pan, Xinxiang</creatorcontrib><description>Waste heat recovery technology has gained popularity due to its ability to save energy for both financial and environmental reasons. In this article, a new technology, thermal power generation (TEG)‐organic Rankine cycle (ORC) combined cycle system, is proposed to recycle cascaded waste heat of ships. The bottom cycle ratios are an important parameter affecting the combined cycle system, but its effect under more working conditions is unknown. Therefore, keeping the evaporator pressure at 0.7 MPa, the environmental‐friendly R245fa working fluid is employed to implement an experimental study on the variation law of the main performance parameters such as the system power output (Wnet), the system thermal efficiency (ηs), power‐production cost (Cg), and waste heat utilization of main engine flue gas (fg) under different TEG/ORC bottom cycle ratios (BCR). At the same time, the TEG‐ORC combined cycle system's performance of the R22 and R245fa is compared. With the increase of the BCR, the Wnet, ηs, and fg increase, but the Cg of the system decreases. When the BCR is 0.885, the Wnet, ηs, Cg, and the rate of fg is 688.4 W, 9.09%, 0.5194 $/kWh, and 85.07%, respectively. This study provides a reference for the clarification and further optimization of the TEG‐ORC combined cycle mechanism.</description><identifier>ISSN: 1944-7442</identifier><identifier>EISSN: 1944-7450</identifier><identifier>DOI: 10.1002/ep.13993</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>bottom cycle ratios ; cascade utilization ; Combined cycle power generation ; Cycle ratio ; Electric power generation ; Evaporators ; Flue gas ; Heat ; Heat recovery ; New technology ; Optimization ; Parameters ; performance comparison of working fluids ; Production costs ; Rankine cycle ; ship waste heat ; Ships ; TEG‐ORC combined cycle ; Thermal power ; Thermodynamic efficiency ; Thermoelectricity ; Waste heat ; Waste heat recovery ; Waste recovery ; Working conditions ; Working fluids</subject><ispartof>Environmental progress, 2023-03, Vol.42 (2), p.n/a</ispartof><rights>2022 American Institute of Chemical Engineers.</rights><rights>2023 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2933-b56f0a9ec31cb6da0d7d1dcbc043a7546067c27581190209745e4ae44a36b01e3</citedby><cites>FETCH-LOGICAL-c2933-b56f0a9ec31cb6da0d7d1dcbc043a7546067c27581190209745e4ae44a36b01e3</cites><orcidid>0000-0001-5501-6067 ; 0000-0002-4748-1265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fep.13993$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fep.13993$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Li, Huaan</creatorcontrib><creatorcontrib>Liu, Changxin</creatorcontrib><creatorcontrib>Xu, Zhenhong</creatorcontrib><creatorcontrib>Liu, Jianhao</creatorcontrib><creatorcontrib>Du, Zhenyu</creatorcontrib><creatorcontrib>Li, Mengze</creatorcontrib><creatorcontrib>Dong, Jingming</creatorcontrib><creatorcontrib>Han, Zhitao</creatorcontrib><creatorcontrib>Xu, Minyi</creatorcontrib><creatorcontrib>Pan, Xinxiang</creatorcontrib><title>Performance comparison of thermal power generation‐organic Rankine cycle combined cycle system for ships waste heat utilization under different bottom cycle ratios</title><title>Environmental progress</title><description>Waste heat recovery technology has gained popularity due to its ability to save energy for both financial and environmental reasons. In this article, a new technology, thermal power generation (TEG)‐organic Rankine cycle (ORC) combined cycle system, is proposed to recycle cascaded waste heat of ships. The bottom cycle ratios are an important parameter affecting the combined cycle system, but its effect under more working conditions is unknown. Therefore, keeping the evaporator pressure at 0.7 MPa, the environmental‐friendly R245fa working fluid is employed to implement an experimental study on the variation law of the main performance parameters such as the system power output (Wnet), the system thermal efficiency (ηs), power‐production cost (Cg), and waste heat utilization of main engine flue gas (fg) under different TEG/ORC bottom cycle ratios (BCR). At the same time, the TEG‐ORC combined cycle system's performance of the R22 and R245fa is compared. With the increase of the BCR, the Wnet, ηs, and fg increase, but the Cg of the system decreases. When the BCR is 0.885, the Wnet, ηs, Cg, and the rate of fg is 688.4 W, 9.09%, 0.5194 $/kWh, and 85.07%, respectively. This study provides a reference for the clarification and further optimization of the TEG‐ORC combined cycle mechanism.</description><subject>bottom cycle ratios</subject><subject>cascade utilization</subject><subject>Combined cycle power generation</subject><subject>Cycle ratio</subject><subject>Electric power generation</subject><subject>Evaporators</subject><subject>Flue gas</subject><subject>Heat</subject><subject>Heat recovery</subject><subject>New technology</subject><subject>Optimization</subject><subject>Parameters</subject><subject>performance comparison of working fluids</subject><subject>Production costs</subject><subject>Rankine cycle</subject><subject>ship waste heat</subject><subject>Ships</subject><subject>TEG‐ORC combined cycle</subject><subject>Thermal power</subject><subject>Thermodynamic efficiency</subject><subject>Thermoelectricity</subject><subject>Waste heat</subject><subject>Waste heat recovery</subject><subject>Waste recovery</subject><subject>Working conditions</subject><subject>Working fluids</subject><issn>1944-7442</issn><issn>1944-7450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kd1KwzAUgIsoOKfgIwS88aYzadJ2uZThHwwcotclTU-3zDapScqYVz6CL-GL-STGdXjn1fnhO9-Bc6LonOAJwTi5gm5CKOf0IBoRzlicsxQf_uUsOY5OnFtjnFHG-Sj6WoCtjW2FloCkaTthlTMamRr5FYR-gzqzAYuWoMEKr4z-_vg0dim0kuhJ6Felw-BWNrvxMlTVvnRb56FFwY7cSnUObURooBUIj3qvGvW-06FeV8FfqboGC9qj0nhv2r1kt9KdRke1aByc7eM4erm9eZ7dx_PHu4fZ9TyWCac0LtOsxoKDpESWWSVwlVekkqXEjIo8ZRnOcpnk6ZQQjhPMw22ACWBM0KzEBOg4uhi8nTVvPThfrE1vdVhZJPmUTfMszWigLgdKWuOchbrorGqF3RYEF79PKKArdk8IaDygG9XA9l-uuFkM_A9gY4zt</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Li, Huaan</creator><creator>Liu, Changxin</creator><creator>Xu, Zhenhong</creator><creator>Liu, Jianhao</creator><creator>Du, Zhenyu</creator><creator>Li, Mengze</creator><creator>Dong, Jingming</creator><creator>Han, Zhitao</creator><creator>Xu, Minyi</creator><creator>Pan, Xinxiang</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons, Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7U6</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5501-6067</orcidid><orcidid>https://orcid.org/0000-0002-4748-1265</orcidid></search><sort><creationdate>202303</creationdate><title>Performance comparison of thermal power generation‐organic Rankine cycle combined cycle system for ships waste heat utilization under different bottom cycle ratios</title><author>Li, Huaan ; Liu, Changxin ; Xu, Zhenhong ; Liu, Jianhao ; Du, Zhenyu ; Li, Mengze ; Dong, Jingming ; Han, Zhitao ; Xu, Minyi ; Pan, Xinxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2933-b56f0a9ec31cb6da0d7d1dcbc043a7546067c27581190209745e4ae44a36b01e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>bottom cycle ratios</topic><topic>cascade utilization</topic><topic>Combined cycle power generation</topic><topic>Cycle ratio</topic><topic>Electric power generation</topic><topic>Evaporators</topic><topic>Flue gas</topic><topic>Heat</topic><topic>Heat recovery</topic><topic>New technology</topic><topic>Optimization</topic><topic>Parameters</topic><topic>performance comparison of working fluids</topic><topic>Production costs</topic><topic>Rankine cycle</topic><topic>ship waste heat</topic><topic>Ships</topic><topic>TEG‐ORC combined cycle</topic><topic>Thermal power</topic><topic>Thermodynamic efficiency</topic><topic>Thermoelectricity</topic><topic>Waste heat</topic><topic>Waste heat recovery</topic><topic>Waste recovery</topic><topic>Working conditions</topic><topic>Working fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huaan</creatorcontrib><creatorcontrib>Liu, Changxin</creatorcontrib><creatorcontrib>Xu, Zhenhong</creatorcontrib><creatorcontrib>Liu, Jianhao</creatorcontrib><creatorcontrib>Du, Zhenyu</creatorcontrib><creatorcontrib>Li, Mengze</creatorcontrib><creatorcontrib>Dong, Jingming</creatorcontrib><creatorcontrib>Han, Zhitao</creatorcontrib><creatorcontrib>Xu, Minyi</creatorcontrib><creatorcontrib>Pan, Xinxiang</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huaan</au><au>Liu, Changxin</au><au>Xu, Zhenhong</au><au>Liu, Jianhao</au><au>Du, Zhenyu</au><au>Li, Mengze</au><au>Dong, Jingming</au><au>Han, Zhitao</au><au>Xu, Minyi</au><au>Pan, Xinxiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance comparison of thermal power generation‐organic Rankine cycle combined cycle system for ships waste heat utilization under different bottom cycle ratios</atitle><jtitle>Environmental progress</jtitle><date>2023-03</date><risdate>2023</risdate><volume>42</volume><issue>2</issue><epage>n/a</epage><issn>1944-7442</issn><eissn>1944-7450</eissn><abstract>Waste heat recovery technology has gained popularity due to its ability to save energy for both financial and environmental reasons. In this article, a new technology, thermal power generation (TEG)‐organic Rankine cycle (ORC) combined cycle system, is proposed to recycle cascaded waste heat of ships. The bottom cycle ratios are an important parameter affecting the combined cycle system, but its effect under more working conditions is unknown. Therefore, keeping the evaporator pressure at 0.7 MPa, the environmental‐friendly R245fa working fluid is employed to implement an experimental study on the variation law of the main performance parameters such as the system power output (Wnet), the system thermal efficiency (ηs), power‐production cost (Cg), and waste heat utilization of main engine flue gas (fg) under different TEG/ORC bottom cycle ratios (BCR). At the same time, the TEG‐ORC combined cycle system's performance of the R22 and R245fa is compared. With the increase of the BCR, the Wnet, ηs, and fg increase, but the Cg of the system decreases. When the BCR is 0.885, the Wnet, ηs, Cg, and the rate of fg is 688.4 W, 9.09%, 0.5194 $/kWh, and 85.07%, respectively. This study provides a reference for the clarification and further optimization of the TEG‐ORC combined cycle mechanism.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/ep.13993</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5501-6067</orcidid><orcidid>https://orcid.org/0000-0002-4748-1265</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-7442
ispartof Environmental progress, 2023-03, Vol.42 (2), p.n/a
issn 1944-7442
1944-7450
language eng
recordid cdi_proquest_journals_2784876563
source Wiley Online Library Journals Frontfile Complete
subjects bottom cycle ratios
cascade utilization
Combined cycle power generation
Cycle ratio
Electric power generation
Evaporators
Flue gas
Heat
Heat recovery
New technology
Optimization
Parameters
performance comparison of working fluids
Production costs
Rankine cycle
ship waste heat
Ships
TEG‐ORC combined cycle
Thermal power
Thermodynamic efficiency
Thermoelectricity
Waste heat
Waste heat recovery
Waste recovery
Working conditions
Working fluids
title Performance comparison of thermal power generation‐organic Rankine cycle combined cycle system for ships waste heat utilization under different bottom cycle ratios
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A08%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20comparison%20of%20thermal%20power%20generation%E2%80%90organic%20Rankine%20cycle%20combined%20cycle%20system%20for%20ships%20waste%20heat%20utilization%20under%20different%20bottom%20cycle%20ratios&rft.jtitle=Environmental%20progress&rft.au=Li,%20Huaan&rft.date=2023-03&rft.volume=42&rft.issue=2&rft.epage=n/a&rft.issn=1944-7442&rft.eissn=1944-7450&rft_id=info:doi/10.1002/ep.13993&rft_dat=%3Cproquest_cross%3E2784876563%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784876563&rft_id=info:pmid/&rfr_iscdi=true