Nonparametric estimation of the distribution of gap times for recurrent events
In many longitudinal studies, information is collected on the times of different kinds of events. Some of these studies involve repeated events, where a subject or sample unit may experience a well-defined event several times throughout their history. Such events are called recurrent events. In this...
Gespeichert in:
Veröffentlicht in: | Statistical methods & applications 2023-03, Vol.32 (1), p.103-128 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 128 |
---|---|
container_issue | 1 |
container_start_page | 103 |
container_title | Statistical methods & applications |
container_volume | 32 |
creator | Soutinho, Gustavo Meira-Machado, Luís |
description | In many longitudinal studies, information is collected on the times of different kinds of events. Some of these studies involve repeated events, where a subject or sample unit may experience a well-defined event several times throughout their history. Such events are called recurrent events. In this paper, we introduce nonparametric methods for estimating the marginal and joint distribution functions for recurrent event data. New estimators are introduced and their extensions to several gap times are also given. Nonparametric inference conditional on current or past covariate measures is also considered. We study by simulation the behavior of the proposed estimators in finite samples, considering two or three gap times. Our proposed methods are applied to the study of (multiple) recurrence times in patients with bladder tumors. Software in the form of an R package, called survivalREC, has been developed, implementing all methods. |
doi_str_mv | 10.1007/s10260-022-00641-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2784874245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2784874245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-bb1f1e65c1968cfd141e01c29eca0480bab10b88a4a3a1b7c4e260674ac452b73</originalsourceid><addsrcrecordid>eNp9UE1PwzAMjRBIjMEf4BSJc8BO0jQ9ookvaRoXkLhFSZaOTqwtSYvEvyesIG5cbMt-79l-hJwjXCJAeZUQuAIGnDMAJZGpAzJDhYJVGl8O97VmvEA4JicpbQGEEFLMyGrVtb2NdheG2Hga0tDs7NB0Le1qOrwGum5Snrjxt7exPc2YkGjdRRqDH2MM7UDDR47plBzV9i2Fs588J8-3N0-Le7Z8vHtYXC-ZFwIG5hzWGFThsVLa12uUGAA9r4K3IDU46xCc1lZaYdGVXob8niql9bLgrhRzcjHp9rF7H_PVZtuNsc0rDS-11KXkssgoPqF87FKKoTZ9zO_FT4Ngvn0zk28m-2b2vhmVSWIipQxuNyH-Sf_D-gICpnD_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784874245</pqid></control><display><type>article</type><title>Nonparametric estimation of the distribution of gap times for recurrent events</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Soutinho, Gustavo ; Meira-Machado, Luís</creator><creatorcontrib>Soutinho, Gustavo ; Meira-Machado, Luís</creatorcontrib><description>In many longitudinal studies, information is collected on the times of different kinds of events. Some of these studies involve repeated events, where a subject or sample unit may experience a well-defined event several times throughout their history. Such events are called recurrent events. In this paper, we introduce nonparametric methods for estimating the marginal and joint distribution functions for recurrent event data. New estimators are introduced and their extensions to several gap times are also given. Nonparametric inference conditional on current or past covariate measures is also considered. We study by simulation the behavior of the proposed estimators in finite samples, considering two or three gap times. Our proposed methods are applied to the study of (multiple) recurrence times in patients with bladder tumors. Software in the form of an R package, called survivalREC, has been developed, implementing all methods.</description><identifier>ISSN: 1618-2510</identifier><identifier>EISSN: 1613-981X</identifier><identifier>DOI: 10.1007/s10260-022-00641-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bladder cancer ; Chemistry and Earth Sciences ; Computer Science ; Distribution functions ; Economics ; Estimation ; Estimators ; Finance ; Health Sciences ; Humanities ; Insurance ; Law ; Management ; Mathematics and Statistics ; Medicine ; Nonparametric statistics ; Original Paper ; Physics ; Statistical Theory and Methods ; Statistics ; Statistics for Business ; Statistics for Engineering ; Statistics for Life Sciences ; Statistics for Social Sciences</subject><ispartof>Statistical methods & applications, 2023-03, Vol.32 (1), p.103-128</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c330t-bb1f1e65c1968cfd141e01c29eca0480bab10b88a4a3a1b7c4e260674ac452b73</cites><orcidid>0000-0002-8577-7665 ; 0000-0002-0559-1327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10260-022-00641-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10260-022-00641-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Soutinho, Gustavo</creatorcontrib><creatorcontrib>Meira-Machado, Luís</creatorcontrib><title>Nonparametric estimation of the distribution of gap times for recurrent events</title><title>Statistical methods & applications</title><addtitle>Stat Methods Appl</addtitle><description>In many longitudinal studies, information is collected on the times of different kinds of events. Some of these studies involve repeated events, where a subject or sample unit may experience a well-defined event several times throughout their history. Such events are called recurrent events. In this paper, we introduce nonparametric methods for estimating the marginal and joint distribution functions for recurrent event data. New estimators are introduced and their extensions to several gap times are also given. Nonparametric inference conditional on current or past covariate measures is also considered. We study by simulation the behavior of the proposed estimators in finite samples, considering two or three gap times. Our proposed methods are applied to the study of (multiple) recurrence times in patients with bladder tumors. Software in the form of an R package, called survivalREC, has been developed, implementing all methods.</description><subject>Bladder cancer</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Distribution functions</subject><subject>Economics</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Finance</subject><subject>Health Sciences</subject><subject>Humanities</subject><subject>Insurance</subject><subject>Law</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Nonparametric statistics</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Statistics for Engineering</subject><subject>Statistics for Life Sciences</subject><subject>Statistics for Social Sciences</subject><issn>1618-2510</issn><issn>1613-981X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMjRBIjMEf4BSJc8BO0jQ9ookvaRoXkLhFSZaOTqwtSYvEvyesIG5cbMt-79l-hJwjXCJAeZUQuAIGnDMAJZGpAzJDhYJVGl8O97VmvEA4JicpbQGEEFLMyGrVtb2NdheG2Hga0tDs7NB0Le1qOrwGum5Snrjxt7exPc2YkGjdRRqDH2MM7UDDR47plBzV9i2Fs588J8-3N0-Le7Z8vHtYXC-ZFwIG5hzWGFThsVLa12uUGAA9r4K3IDU46xCc1lZaYdGVXob8niql9bLgrhRzcjHp9rF7H_PVZtuNsc0rDS-11KXkssgoPqF87FKKoTZ9zO_FT4Ngvn0zk28m-2b2vhmVSWIipQxuNyH-Sf_D-gICpnD_</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Soutinho, Gustavo</creator><creator>Meira-Machado, Luís</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8577-7665</orcidid><orcidid>https://orcid.org/0000-0002-0559-1327</orcidid></search><sort><creationdate>20230301</creationdate><title>Nonparametric estimation of the distribution of gap times for recurrent events</title><author>Soutinho, Gustavo ; Meira-Machado, Luís</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-bb1f1e65c1968cfd141e01c29eca0480bab10b88a4a3a1b7c4e260674ac452b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bladder cancer</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Distribution functions</topic><topic>Economics</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Finance</topic><topic>Health Sciences</topic><topic>Humanities</topic><topic>Insurance</topic><topic>Law</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Nonparametric statistics</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Statistics for Engineering</topic><topic>Statistics for Life Sciences</topic><topic>Statistics for Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soutinho, Gustavo</creatorcontrib><creatorcontrib>Meira-Machado, Luís</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistical methods & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soutinho, Gustavo</au><au>Meira-Machado, Luís</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric estimation of the distribution of gap times for recurrent events</atitle><jtitle>Statistical methods & applications</jtitle><stitle>Stat Methods Appl</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>32</volume><issue>1</issue><spage>103</spage><epage>128</epage><pages>103-128</pages><issn>1618-2510</issn><eissn>1613-981X</eissn><abstract>In many longitudinal studies, information is collected on the times of different kinds of events. Some of these studies involve repeated events, where a subject or sample unit may experience a well-defined event several times throughout their history. Such events are called recurrent events. In this paper, we introduce nonparametric methods for estimating the marginal and joint distribution functions for recurrent event data. New estimators are introduced and their extensions to several gap times are also given. Nonparametric inference conditional on current or past covariate measures is also considered. We study by simulation the behavior of the proposed estimators in finite samples, considering two or three gap times. Our proposed methods are applied to the study of (multiple) recurrence times in patients with bladder tumors. Software in the form of an R package, called survivalREC, has been developed, implementing all methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10260-022-00641-6</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-8577-7665</orcidid><orcidid>https://orcid.org/0000-0002-0559-1327</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2510 |
ispartof | Statistical methods & applications, 2023-03, Vol.32 (1), p.103-128 |
issn | 1618-2510 1613-981X |
language | eng |
recordid | cdi_proquest_journals_2784874245 |
source | EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Bladder cancer Chemistry and Earth Sciences Computer Science Distribution functions Economics Estimation Estimators Finance Health Sciences Humanities Insurance Law Management Mathematics and Statistics Medicine Nonparametric statistics Original Paper Physics Statistical Theory and Methods Statistics Statistics for Business Statistics for Engineering Statistics for Life Sciences Statistics for Social Sciences |
title | Nonparametric estimation of the distribution of gap times for recurrent events |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20estimation%20of%20the%20distribution%20of%20gap%20times%20for%20recurrent%20events&rft.jtitle=Statistical%20methods%20&%20applications&rft.au=Soutinho,%20Gustavo&rft.date=2023-03-01&rft.volume=32&rft.issue=1&rft.spage=103&rft.epage=128&rft.pages=103-128&rft.issn=1618-2510&rft.eissn=1613-981X&rft_id=info:doi/10.1007/s10260-022-00641-6&rft_dat=%3Cproquest_cross%3E2784874245%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784874245&rft_id=info:pmid/&rfr_iscdi=true |