Nonparametric estimation of the distribution of gap times for recurrent events

In many longitudinal studies, information is collected on the times of different kinds of events. Some of these studies involve repeated events, where a subject or sample unit may experience a well-defined event several times throughout their history. Such events are called recurrent events. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical methods & applications 2023-03, Vol.32 (1), p.103-128
Hauptverfasser: Soutinho, Gustavo, Meira-Machado, Luís
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128
container_issue 1
container_start_page 103
container_title Statistical methods & applications
container_volume 32
creator Soutinho, Gustavo
Meira-Machado, Luís
description In many longitudinal studies, information is collected on the times of different kinds of events. Some of these studies involve repeated events, where a subject or sample unit may experience a well-defined event several times throughout their history. Such events are called recurrent events. In this paper, we introduce nonparametric methods for estimating the marginal and joint distribution functions for recurrent event data. New estimators are introduced and their extensions to several gap times are also given. Nonparametric inference conditional on current or past covariate measures is also considered. We study by simulation the behavior of the proposed estimators in finite samples, considering two or three gap times. Our proposed methods are applied to the study of (multiple) recurrence times in patients with bladder tumors. Software in the form of an R package, called survivalREC, has been developed, implementing all methods.
doi_str_mv 10.1007/s10260-022-00641-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2784874245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2784874245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-bb1f1e65c1968cfd141e01c29eca0480bab10b88a4a3a1b7c4e260674ac452b73</originalsourceid><addsrcrecordid>eNp9UE1PwzAMjRBIjMEf4BSJc8BO0jQ9ookvaRoXkLhFSZaOTqwtSYvEvyesIG5cbMt-79l-hJwjXCJAeZUQuAIGnDMAJZGpAzJDhYJVGl8O97VmvEA4JicpbQGEEFLMyGrVtb2NdheG2Hga0tDs7NB0Le1qOrwGum5Snrjxt7exPc2YkGjdRRqDH2MM7UDDR47plBzV9i2Fs588J8-3N0-Le7Z8vHtYXC-ZFwIG5hzWGFThsVLa12uUGAA9r4K3IDU46xCc1lZaYdGVXob8niql9bLgrhRzcjHp9rF7H_PVZtuNsc0rDS-11KXkssgoPqF87FKKoTZ9zO_FT4Ngvn0zk28m-2b2vhmVSWIipQxuNyH-Sf_D-gICpnD_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784874245</pqid></control><display><type>article</type><title>Nonparametric estimation of the distribution of gap times for recurrent events</title><source>EBSCOhost Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Soutinho, Gustavo ; Meira-Machado, Luís</creator><creatorcontrib>Soutinho, Gustavo ; Meira-Machado, Luís</creatorcontrib><description>In many longitudinal studies, information is collected on the times of different kinds of events. Some of these studies involve repeated events, where a subject or sample unit may experience a well-defined event several times throughout their history. Such events are called recurrent events. In this paper, we introduce nonparametric methods for estimating the marginal and joint distribution functions for recurrent event data. New estimators are introduced and their extensions to several gap times are also given. Nonparametric inference conditional on current or past covariate measures is also considered. We study by simulation the behavior of the proposed estimators in finite samples, considering two or three gap times. Our proposed methods are applied to the study of (multiple) recurrence times in patients with bladder tumors. Software in the form of an R package, called survivalREC, has been developed, implementing all methods.</description><identifier>ISSN: 1618-2510</identifier><identifier>EISSN: 1613-981X</identifier><identifier>DOI: 10.1007/s10260-022-00641-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bladder cancer ; Chemistry and Earth Sciences ; Computer Science ; Distribution functions ; Economics ; Estimation ; Estimators ; Finance ; Health Sciences ; Humanities ; Insurance ; Law ; Management ; Mathematics and Statistics ; Medicine ; Nonparametric statistics ; Original Paper ; Physics ; Statistical Theory and Methods ; Statistics ; Statistics for Business ; Statistics for Engineering ; Statistics for Life Sciences ; Statistics for Social Sciences</subject><ispartof>Statistical methods &amp; applications, 2023-03, Vol.32 (1), p.103-128</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c330t-bb1f1e65c1968cfd141e01c29eca0480bab10b88a4a3a1b7c4e260674ac452b73</cites><orcidid>0000-0002-8577-7665 ; 0000-0002-0559-1327</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10260-022-00641-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10260-022-00641-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Soutinho, Gustavo</creatorcontrib><creatorcontrib>Meira-Machado, Luís</creatorcontrib><title>Nonparametric estimation of the distribution of gap times for recurrent events</title><title>Statistical methods &amp; applications</title><addtitle>Stat Methods Appl</addtitle><description>In many longitudinal studies, information is collected on the times of different kinds of events. Some of these studies involve repeated events, where a subject or sample unit may experience a well-defined event several times throughout their history. Such events are called recurrent events. In this paper, we introduce nonparametric methods for estimating the marginal and joint distribution functions for recurrent event data. New estimators are introduced and their extensions to several gap times are also given. Nonparametric inference conditional on current or past covariate measures is also considered. We study by simulation the behavior of the proposed estimators in finite samples, considering two or three gap times. Our proposed methods are applied to the study of (multiple) recurrence times in patients with bladder tumors. Software in the form of an R package, called survivalREC, has been developed, implementing all methods.</description><subject>Bladder cancer</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Distribution functions</subject><subject>Economics</subject><subject>Estimation</subject><subject>Estimators</subject><subject>Finance</subject><subject>Health Sciences</subject><subject>Humanities</subject><subject>Insurance</subject><subject>Law</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Nonparametric statistics</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics for Business</subject><subject>Statistics for Engineering</subject><subject>Statistics for Life Sciences</subject><subject>Statistics for Social Sciences</subject><issn>1618-2510</issn><issn>1613-981X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMjRBIjMEf4BSJc8BO0jQ9ookvaRoXkLhFSZaOTqwtSYvEvyesIG5cbMt-79l-hJwjXCJAeZUQuAIGnDMAJZGpAzJDhYJVGl8O97VmvEA4JicpbQGEEFLMyGrVtb2NdheG2Hga0tDs7NB0Le1qOrwGum5Snrjxt7exPc2YkGjdRRqDH2MM7UDDR47plBzV9i2Fs588J8-3N0-Le7Z8vHtYXC-ZFwIG5hzWGFThsVLa12uUGAA9r4K3IDU46xCc1lZaYdGVXob8niql9bLgrhRzcjHp9rF7H_PVZtuNsc0rDS-11KXkssgoPqF87FKKoTZ9zO_FT4Ngvn0zk28m-2b2vhmVSWIipQxuNyH-Sf_D-gICpnD_</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Soutinho, Gustavo</creator><creator>Meira-Machado, Luís</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8577-7665</orcidid><orcidid>https://orcid.org/0000-0002-0559-1327</orcidid></search><sort><creationdate>20230301</creationdate><title>Nonparametric estimation of the distribution of gap times for recurrent events</title><author>Soutinho, Gustavo ; Meira-Machado, Luís</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-bb1f1e65c1968cfd141e01c29eca0480bab10b88a4a3a1b7c4e260674ac452b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bladder cancer</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Distribution functions</topic><topic>Economics</topic><topic>Estimation</topic><topic>Estimators</topic><topic>Finance</topic><topic>Health Sciences</topic><topic>Humanities</topic><topic>Insurance</topic><topic>Law</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Nonparametric statistics</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics for Business</topic><topic>Statistics for Engineering</topic><topic>Statistics for Life Sciences</topic><topic>Statistics for Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soutinho, Gustavo</creatorcontrib><creatorcontrib>Meira-Machado, Luís</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistical methods &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soutinho, Gustavo</au><au>Meira-Machado, Luís</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric estimation of the distribution of gap times for recurrent events</atitle><jtitle>Statistical methods &amp; applications</jtitle><stitle>Stat Methods Appl</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>32</volume><issue>1</issue><spage>103</spage><epage>128</epage><pages>103-128</pages><issn>1618-2510</issn><eissn>1613-981X</eissn><abstract>In many longitudinal studies, information is collected on the times of different kinds of events. Some of these studies involve repeated events, where a subject or sample unit may experience a well-defined event several times throughout their history. Such events are called recurrent events. In this paper, we introduce nonparametric methods for estimating the marginal and joint distribution functions for recurrent event data. New estimators are introduced and their extensions to several gap times are also given. Nonparametric inference conditional on current or past covariate measures is also considered. We study by simulation the behavior of the proposed estimators in finite samples, considering two or three gap times. Our proposed methods are applied to the study of (multiple) recurrence times in patients with bladder tumors. Software in the form of an R package, called survivalREC, has been developed, implementing all methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10260-022-00641-6</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-8577-7665</orcidid><orcidid>https://orcid.org/0000-0002-0559-1327</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1618-2510
ispartof Statistical methods & applications, 2023-03, Vol.32 (1), p.103-128
issn 1618-2510
1613-981X
language eng
recordid cdi_proquest_journals_2784874245
source EBSCOhost Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Bladder cancer
Chemistry and Earth Sciences
Computer Science
Distribution functions
Economics
Estimation
Estimators
Finance
Health Sciences
Humanities
Insurance
Law
Management
Mathematics and Statistics
Medicine
Nonparametric statistics
Original Paper
Physics
Statistical Theory and Methods
Statistics
Statistics for Business
Statistics for Engineering
Statistics for Life Sciences
Statistics for Social Sciences
title Nonparametric estimation of the distribution of gap times for recurrent events
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A12%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20estimation%20of%20the%20distribution%20of%20gap%20times%20for%20recurrent%20events&rft.jtitle=Statistical%20methods%20&%20applications&rft.au=Soutinho,%20Gustavo&rft.date=2023-03-01&rft.volume=32&rft.issue=1&rft.spage=103&rft.epage=128&rft.pages=103-128&rft.issn=1618-2510&rft.eissn=1613-981X&rft_id=info:doi/10.1007/s10260-022-00641-6&rft_dat=%3Cproquest_cross%3E2784874245%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784874245&rft_id=info:pmid/&rfr_iscdi=true