Imaging local diffusion in microstructures using NV-based pulsed field gradient NMR

Understanding diffusion in microstructures plays a crucial role in many scientific fields, including neuroscience, cancer or energy research. While magnetic resonance (MR) methods are the gold standard for diffusion measurements, spatial encoding in MR imaging has limitations. Here, we introduce nit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
Hauptverfasser: Bruckmaier, F, Allert, R D, Neuling, N R, Amrein, P, Littin, S, Briegel, K D, Schätzle, P, Knittel, P, Zaitsev, M, Bucher, D B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bruckmaier, F
Allert, R D
Neuling, N R
Amrein, P
Littin, S
Briegel, K D
Schätzle, P
Knittel, P
Zaitsev, M
Bucher, D B
description Understanding diffusion in microstructures plays a crucial role in many scientific fields, including neuroscience, cancer or energy research. While magnetic resonance (MR) methods are the gold standard for diffusion measurements, spatial encoding in MR imaging has limitations. Here, we introduce nitrogen-vacancy (NV) center based nuclear magnetic resonance (NMR) spectroscopy as a powerful tool to probe diffusion with an optical readouts. We have developed an experimental scheme combining pulsed gradient spin echo (PGSE) with optically detected NV-NMR spectroscopy, which allows for the local quantification of molecular diffusion and flow within microscopic sample volumes. We demonstrate correlated optical imaging with spatially resolved PGSE NV-NMR experiments probing anisotropic water diffusion within a model microstructure. Our optically detected PGSE NV-NMR technique opens up prospects for extending the current capabilities of investigating diffusion processes with the future potential of probing single cells, tissue microstructures, or ion mobility in thin film materials for battery applications.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2784693938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2784693938</sourcerecordid><originalsourceid>FETCH-proquest_journals_27846939383</originalsourceid><addsrcrecordid>eNqNyrsKwjAYQOEgCBbtO_zgXKhJr7MoOuig4lpik5SUNKm5vL8RfACnM3xngRJMyC5rCoxXKHVuzPMcVzUuS5Kg-3mig9QDKNNTBUwKEZw0GqSGSfbWOG9D74PlDiLE8frMXtRxBnNQ3wjJFYPBUia59nC93DZoKWi09Nc12h4Pj_0pm615B-58N5pgdaQO101RtaQlDfnv-gBLbUAz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784693938</pqid></control><display><type>article</type><title>Imaging local diffusion in microstructures using NV-based pulsed field gradient NMR</title><source>Free E- Journals</source><creator>Bruckmaier, F ; Allert, R D ; Neuling, N R ; Amrein, P ; Littin, S ; Briegel, K D ; Schätzle, P ; Knittel, P ; Zaitsev, M ; Bucher, D B</creator><creatorcontrib>Bruckmaier, F ; Allert, R D ; Neuling, N R ; Amrein, P ; Littin, S ; Briegel, K D ; Schätzle, P ; Knittel, P ; Zaitsev, M ; Bucher, D B</creatorcontrib><description>Understanding diffusion in microstructures plays a crucial role in many scientific fields, including neuroscience, cancer or energy research. While magnetic resonance (MR) methods are the gold standard for diffusion measurements, spatial encoding in MR imaging has limitations. Here, we introduce nitrogen-vacancy (NV) center based nuclear magnetic resonance (NMR) spectroscopy as a powerful tool to probe diffusion with an optical readouts. We have developed an experimental scheme combining pulsed gradient spin echo (PGSE) with optically detected NV-NMR spectroscopy, which allows for the local quantification of molecular diffusion and flow within microscopic sample volumes. We demonstrate correlated optical imaging with spatially resolved PGSE NV-NMR experiments probing anisotropic water diffusion within a model microstructure. Our optically detected PGSE NV-NMR technique opens up prospects for extending the current capabilities of investigating diffusion processes with the future potential of probing single cells, tissue microstructures, or ion mobility in thin film materials for battery applications.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ionic mobility ; Lattice vacancies ; Medical imaging ; Microstructure ; Molecular diffusion ; NMR ; NMR spectroscopy ; Nuclear magnetic resonance ; Thin films</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Bruckmaier, F</creatorcontrib><creatorcontrib>Allert, R D</creatorcontrib><creatorcontrib>Neuling, N R</creatorcontrib><creatorcontrib>Amrein, P</creatorcontrib><creatorcontrib>Littin, S</creatorcontrib><creatorcontrib>Briegel, K D</creatorcontrib><creatorcontrib>Schätzle, P</creatorcontrib><creatorcontrib>Knittel, P</creatorcontrib><creatorcontrib>Zaitsev, M</creatorcontrib><creatorcontrib>Bucher, D B</creatorcontrib><title>Imaging local diffusion in microstructures using NV-based pulsed field gradient NMR</title><title>arXiv.org</title><description>Understanding diffusion in microstructures plays a crucial role in many scientific fields, including neuroscience, cancer or energy research. While magnetic resonance (MR) methods are the gold standard for diffusion measurements, spatial encoding in MR imaging has limitations. Here, we introduce nitrogen-vacancy (NV) center based nuclear magnetic resonance (NMR) spectroscopy as a powerful tool to probe diffusion with an optical readouts. We have developed an experimental scheme combining pulsed gradient spin echo (PGSE) with optically detected NV-NMR spectroscopy, which allows for the local quantification of molecular diffusion and flow within microscopic sample volumes. We demonstrate correlated optical imaging with spatially resolved PGSE NV-NMR experiments probing anisotropic water diffusion within a model microstructure. Our optically detected PGSE NV-NMR technique opens up prospects for extending the current capabilities of investigating diffusion processes with the future potential of probing single cells, tissue microstructures, or ion mobility in thin film materials for battery applications.</description><subject>Ionic mobility</subject><subject>Lattice vacancies</subject><subject>Medical imaging</subject><subject>Microstructure</subject><subject>Molecular diffusion</subject><subject>NMR</subject><subject>NMR spectroscopy</subject><subject>Nuclear magnetic resonance</subject><subject>Thin films</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyrsKwjAYQOEgCBbtO_zgXKhJr7MoOuig4lpik5SUNKm5vL8RfACnM3xngRJMyC5rCoxXKHVuzPMcVzUuS5Kg-3mig9QDKNNTBUwKEZw0GqSGSfbWOG9D74PlDiLE8frMXtRxBnNQ3wjJFYPBUia59nC93DZoKWi09Nc12h4Pj_0pm615B-58N5pgdaQO101RtaQlDfnv-gBLbUAz</recordid><startdate>20230711</startdate><enddate>20230711</enddate><creator>Bruckmaier, F</creator><creator>Allert, R D</creator><creator>Neuling, N R</creator><creator>Amrein, P</creator><creator>Littin, S</creator><creator>Briegel, K D</creator><creator>Schätzle, P</creator><creator>Knittel, P</creator><creator>Zaitsev, M</creator><creator>Bucher, D B</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230711</creationdate><title>Imaging local diffusion in microstructures using NV-based pulsed field gradient NMR</title><author>Bruckmaier, F ; Allert, R D ; Neuling, N R ; Amrein, P ; Littin, S ; Briegel, K D ; Schätzle, P ; Knittel, P ; Zaitsev, M ; Bucher, D B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27846939383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Ionic mobility</topic><topic>Lattice vacancies</topic><topic>Medical imaging</topic><topic>Microstructure</topic><topic>Molecular diffusion</topic><topic>NMR</topic><topic>NMR spectroscopy</topic><topic>Nuclear magnetic resonance</topic><topic>Thin films</topic><toplevel>online_resources</toplevel><creatorcontrib>Bruckmaier, F</creatorcontrib><creatorcontrib>Allert, R D</creatorcontrib><creatorcontrib>Neuling, N R</creatorcontrib><creatorcontrib>Amrein, P</creatorcontrib><creatorcontrib>Littin, S</creatorcontrib><creatorcontrib>Briegel, K D</creatorcontrib><creatorcontrib>Schätzle, P</creatorcontrib><creatorcontrib>Knittel, P</creatorcontrib><creatorcontrib>Zaitsev, M</creatorcontrib><creatorcontrib>Bucher, D B</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruckmaier, F</au><au>Allert, R D</au><au>Neuling, N R</au><au>Amrein, P</au><au>Littin, S</au><au>Briegel, K D</au><au>Schätzle, P</au><au>Knittel, P</au><au>Zaitsev, M</au><au>Bucher, D B</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Imaging local diffusion in microstructures using NV-based pulsed field gradient NMR</atitle><jtitle>arXiv.org</jtitle><date>2023-07-11</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Understanding diffusion in microstructures plays a crucial role in many scientific fields, including neuroscience, cancer or energy research. While magnetic resonance (MR) methods are the gold standard for diffusion measurements, spatial encoding in MR imaging has limitations. Here, we introduce nitrogen-vacancy (NV) center based nuclear magnetic resonance (NMR) spectroscopy as a powerful tool to probe diffusion with an optical readouts. We have developed an experimental scheme combining pulsed gradient spin echo (PGSE) with optically detected NV-NMR spectroscopy, which allows for the local quantification of molecular diffusion and flow within microscopic sample volumes. We demonstrate correlated optical imaging with spatially resolved PGSE NV-NMR experiments probing anisotropic water diffusion within a model microstructure. Our optically detected PGSE NV-NMR technique opens up prospects for extending the current capabilities of investigating diffusion processes with the future potential of probing single cells, tissue microstructures, or ion mobility in thin film materials for battery applications.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2784693938
source Free E- Journals
subjects Ionic mobility
Lattice vacancies
Medical imaging
Microstructure
Molecular diffusion
NMR
NMR spectroscopy
Nuclear magnetic resonance
Thin films
title Imaging local diffusion in microstructures using NV-based pulsed field gradient NMR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A56%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Imaging%20local%20diffusion%20in%20microstructures%20using%20NV-based%20pulsed%20field%20gradient%20NMR&rft.jtitle=arXiv.org&rft.au=Bruckmaier,%20F&rft.date=2023-07-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2784693938%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784693938&rft_id=info:pmid/&rfr_iscdi=true