Operationalizing AI in Future Networks: A Bird's Eye View from the System Perspective

Modern Artificial Intelligence (AI) technologies, led by Machine Learning (ML), have gained unprecedented momentum over the past decade. Following this wave of "AI summer", the network research community has also embraced AI/ML algorithms to address many problems related to network operati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Liu, Qiong, Zhang, Tianzhu, Hemmatpour, Masoud, Qiu, Han, Zhang, Dong, Chung Shue Chen, Mellia, Marco, Aghasaryan, Armen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Liu, Qiong
Zhang, Tianzhu
Hemmatpour, Masoud
Qiu, Han
Zhang, Dong
Chung Shue Chen
Mellia, Marco
Aghasaryan, Armen
description Modern Artificial Intelligence (AI) technologies, led by Machine Learning (ML), have gained unprecedented momentum over the past decade. Following this wave of "AI summer", the network research community has also embraced AI/ML algorithms to address many problems related to network operations and management. However, compared to their counterparts in other domains, most ML-based solutions have yet to receive large-scale deployment due to insufficient maturity for production settings. This article concentrates on the practical issues of developing and operating ML-based solutions in real networks. Specifically, we enumerate the key factors hindering the integration of AI/ML in real networks and review existing solutions to uncover the missing considerations. Further, we highlight a promising direction, i.e., Machine Learning Operations (MLOps), that can close the gap. We believe this paper spotlights the system-related considerations on implementing \& maintaining ML-based solutions and invigorate their full adoption in future networks.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2784692396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2784692396</sourcerecordid><originalsourceid>FETCH-proquest_journals_27846923963</originalsourceid><addsrcrecordid>eNqNzcsKgkAUgOEhCJLyHQ60aBXYjJdqZ6HUpoIuW5E61pg5NmdM7Olr0QO0-jcf_B1mcSEm46nLeY_ZRLnjONwPuOcJix23FerUSFWmhXzL8grhGmQJcW1qjbBB0yh9pzmEsJD6MiKIWoSTxAYyrR5gbgj7lgw-YIeaKjwb-cIB62ZpQWj_2mfDODosV-NKq2eNZJJc1fq7pIQHU9efcTHzxX_qA0QpP_o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784692396</pqid></control><display><type>article</type><title>Operationalizing AI in Future Networks: A Bird's Eye View from the System Perspective</title><source>Free E- Journals</source><creator>Liu, Qiong ; Zhang, Tianzhu ; Hemmatpour, Masoud ; Qiu, Han ; Zhang, Dong ; Chung Shue Chen ; Mellia, Marco ; Aghasaryan, Armen</creator><creatorcontrib>Liu, Qiong ; Zhang, Tianzhu ; Hemmatpour, Masoud ; Qiu, Han ; Zhang, Dong ; Chung Shue Chen ; Mellia, Marco ; Aghasaryan, Armen</creatorcontrib><description>Modern Artificial Intelligence (AI) technologies, led by Machine Learning (ML), have gained unprecedented momentum over the past decade. Following this wave of "AI summer", the network research community has also embraced AI/ML algorithms to address many problems related to network operations and management. However, compared to their counterparts in other domains, most ML-based solutions have yet to receive large-scale deployment due to insufficient maturity for production settings. This article concentrates on the practical issues of developing and operating ML-based solutions in real networks. Specifically, we enumerate the key factors hindering the integration of AI/ML in real networks and review existing solutions to uncover the missing considerations. Further, we highlight a promising direction, i.e., Machine Learning Operations (MLOps), that can close the gap. We believe this paper spotlights the system-related considerations on implementing \&amp; maintaining ML-based solutions and invigorate their full adoption in future networks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Artificial intelligence ; Machine learning ; Networks</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Liu, Qiong</creatorcontrib><creatorcontrib>Zhang, Tianzhu</creatorcontrib><creatorcontrib>Hemmatpour, Masoud</creatorcontrib><creatorcontrib>Qiu, Han</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Chung Shue Chen</creatorcontrib><creatorcontrib>Mellia, Marco</creatorcontrib><creatorcontrib>Aghasaryan, Armen</creatorcontrib><title>Operationalizing AI in Future Networks: A Bird's Eye View from the System Perspective</title><title>arXiv.org</title><description>Modern Artificial Intelligence (AI) technologies, led by Machine Learning (ML), have gained unprecedented momentum over the past decade. Following this wave of "AI summer", the network research community has also embraced AI/ML algorithms to address many problems related to network operations and management. However, compared to their counterparts in other domains, most ML-based solutions have yet to receive large-scale deployment due to insufficient maturity for production settings. This article concentrates on the practical issues of developing and operating ML-based solutions in real networks. Specifically, we enumerate the key factors hindering the integration of AI/ML in real networks and review existing solutions to uncover the missing considerations. Further, we highlight a promising direction, i.e., Machine Learning Operations (MLOps), that can close the gap. We believe this paper spotlights the system-related considerations on implementing \&amp; maintaining ML-based solutions and invigorate their full adoption in future networks.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Machine learning</subject><subject>Networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNzcsKgkAUgOEhCJLyHQ60aBXYjJdqZ6HUpoIuW5E61pg5NmdM7Olr0QO0-jcf_B1mcSEm46nLeY_ZRLnjONwPuOcJix23FerUSFWmhXzL8grhGmQJcW1qjbBB0yh9pzmEsJD6MiKIWoSTxAYyrR5gbgj7lgw-YIeaKjwb-cIB62ZpQWj_2mfDODosV-NKq2eNZJJc1fq7pIQHU9efcTHzxX_qA0QpP_o</recordid><startdate>20240625</startdate><enddate>20240625</enddate><creator>Liu, Qiong</creator><creator>Zhang, Tianzhu</creator><creator>Hemmatpour, Masoud</creator><creator>Qiu, Han</creator><creator>Zhang, Dong</creator><creator>Chung Shue Chen</creator><creator>Mellia, Marco</creator><creator>Aghasaryan, Armen</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240625</creationdate><title>Operationalizing AI in Future Networks: A Bird's Eye View from the System Perspective</title><author>Liu, Qiong ; Zhang, Tianzhu ; Hemmatpour, Masoud ; Qiu, Han ; Zhang, Dong ; Chung Shue Chen ; Mellia, Marco ; Aghasaryan, Armen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27846923963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Machine learning</topic><topic>Networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qiong</creatorcontrib><creatorcontrib>Zhang, Tianzhu</creatorcontrib><creatorcontrib>Hemmatpour, Masoud</creatorcontrib><creatorcontrib>Qiu, Han</creatorcontrib><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Chung Shue Chen</creatorcontrib><creatorcontrib>Mellia, Marco</creatorcontrib><creatorcontrib>Aghasaryan, Armen</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qiong</au><au>Zhang, Tianzhu</au><au>Hemmatpour, Masoud</au><au>Qiu, Han</au><au>Zhang, Dong</au><au>Chung Shue Chen</au><au>Mellia, Marco</au><au>Aghasaryan, Armen</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Operationalizing AI in Future Networks: A Bird's Eye View from the System Perspective</atitle><jtitle>arXiv.org</jtitle><date>2024-06-25</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Modern Artificial Intelligence (AI) technologies, led by Machine Learning (ML), have gained unprecedented momentum over the past decade. Following this wave of "AI summer", the network research community has also embraced AI/ML algorithms to address many problems related to network operations and management. However, compared to their counterparts in other domains, most ML-based solutions have yet to receive large-scale deployment due to insufficient maturity for production settings. This article concentrates on the practical issues of developing and operating ML-based solutions in real networks. Specifically, we enumerate the key factors hindering the integration of AI/ML in real networks and review existing solutions to uncover the missing considerations. Further, we highlight a promising direction, i.e., Machine Learning Operations (MLOps), that can close the gap. We believe this paper spotlights the system-related considerations on implementing \&amp; maintaining ML-based solutions and invigorate their full adoption in future networks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2784692396
source Free E- Journals
subjects Algorithms
Artificial intelligence
Machine learning
Networks
title Operationalizing AI in Future Networks: A Bird's Eye View from the System Perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Operationalizing%20AI%20in%20Future%20Networks:%20A%20Bird's%20Eye%20View%20from%20the%20System%20Perspective&rft.jtitle=arXiv.org&rft.au=Liu,%20Qiong&rft.date=2024-06-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2784692396%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784692396&rft_id=info:pmid/&rfr_iscdi=true