Class-Specific Semantic Reconstruction for Open Set Recognition
Open set recognition enables deep neural networks (DNNs) to identify samples of unknown classes, while maintaining high classification accuracy on samples of known classes. Existing methods based on auto-encoder (AE) and prototype learning show great potential in handling this challenging task. In t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2023-04, Vol.45 (4), p.4214-4228 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4228 |
---|---|
container_issue | 4 |
container_start_page | 4214 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 45 |
creator | Huang, Hongzhi Wang, Yu Hu, Qinghua Cheng, Ming-Ming |
description | Open set recognition enables deep neural networks (DNNs) to identify samples of unknown classes, while maintaining high classification accuracy on samples of known classes. Existing methods based on auto-encoder (AE) and prototype learning show great potential in handling this challenging task. In this study, we propose a novel method, called Class-Specific Semantic Reconstruction (CSSR), that integrates the power of AE and prototype learning. Specifically, CSSR replaces prototype points with manifolds represented by class-specific AEs. Unlike conventional prototype-based methods, CSSR models each known class on an individual AE manifold, and measures class belongingness through AE's reconstruction error. Class-specific AEs are plugged into the top of the DNN backbone and reconstruct the semantic representations learned by the DNN instead of the raw image. Through end-to-end learning, the DNN and the AEs boost each other to learn both discriminative and representative information. The results of experiments conducted on multiple datasets show that the proposed method achieves outstanding performance in both close and open set recognition and is sufficiently simple and flexible to incorporate into existing frameworks. |
doi_str_mv | 10.1109/TPAMI.2022.3200384 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2784555264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9864101</ieee_id><sourcerecordid>2705749540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-950ac4fb482ca3540093b8aeb1366fe5ee2440d14bac09f9634599a105be76083</originalsourceid><addsrcrecordid>eNpdkMtKA0EQRRtRTIz-gIIE3LiZWP2a6V5JCD4CkYiJ66anUyMT5hGnZxb-vZ2HWbiqgnvqUhxCrimMKAX9sHwfv01HDBgbcQbAlTghfaq5jrjk-pT0gcYsUoqpHrnwfg1AhQR-Tnpcai2kSPrkcVJY76PFBl2e5W64wNJWbVg-0NWVb5vOtXldDbO6Gc43WAWg3WVfVb4NLslZZguPV4c5IJ_PT8vJazSbv0wn41nkuKRtpCVYJ7JUKOYslwJA81RZTCmP4wwlIhMCVlSk1oHOdMxFeNFSkCkmMSg-IPf73k1Tf3foW1Pm3mFR2ArrzhuWgEyEDs0BvfuHruuuqcJ3gVJCSsliESi2p1xTe99gZjZNXtrmx1AwW71mp9ds9ZqD3nB0e6ju0hJXx5M_nwG42QM5Ih5jrWJBgfJfMsZ8mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784555264</pqid></control><display><type>article</type><title>Class-Specific Semantic Reconstruction for Open Set Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Hongzhi ; Wang, Yu ; Hu, Qinghua ; Cheng, Ming-Ming</creator><creatorcontrib>Huang, Hongzhi ; Wang, Yu ; Hu, Qinghua ; Cheng, Ming-Ming</creatorcontrib><description>Open set recognition enables deep neural networks (DNNs) to identify samples of unknown classes, while maintaining high classification accuracy on samples of known classes. Existing methods based on auto-encoder (AE) and prototype learning show great potential in handling this challenging task. In this study, we propose a novel method, called Class-Specific Semantic Reconstruction (CSSR), that integrates the power of AE and prototype learning. Specifically, CSSR replaces prototype points with manifolds represented by class-specific AEs. Unlike conventional prototype-based methods, CSSR models each known class on an individual AE manifold, and measures class belongingness through AE's reconstruction error. Class-specific AEs are plugged into the top of the DNN backbone and reconstruct the semantic representations learned by the DNN instead of the raw image. Through end-to-end learning, the DNN and the AEs boost each other to learn both discriminative and representative information. The results of experiments conducted on multiple datasets show that the proposed method achieves outstanding performance in both close and open set recognition and is sufficiently simple and flexible to incorporate into existing frameworks.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2022.3200384</identifier><identifier>PMID: 35994547</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; auto-encoder ; class-specific semantic reconstruction ; Classification ; Coders ; Image recognition ; Image reconstruction ; Machine learning ; Manifolds ; open set recognition ; prototype learning ; Prototypes ; Recognition ; Reconstruction ; Semantics ; Task analysis ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-04, Vol.45 (4), p.4214-4228</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-950ac4fb482ca3540093b8aeb1366fe5ee2440d14bac09f9634599a105be76083</citedby><cites>FETCH-LOGICAL-c351t-950ac4fb482ca3540093b8aeb1366fe5ee2440d14bac09f9634599a105be76083</cites><orcidid>0000-0002-4788-8655 ; 0000-0001-7765-8095 ; 0000-0001-5550-8758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9864101$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9864101$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35994547$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Hongzhi</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Hu, Qinghua</creatorcontrib><creatorcontrib>Cheng, Ming-Ming</creatorcontrib><title>Class-Specific Semantic Reconstruction for Open Set Recognition</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Open set recognition enables deep neural networks (DNNs) to identify samples of unknown classes, while maintaining high classification accuracy on samples of known classes. Existing methods based on auto-encoder (AE) and prototype learning show great potential in handling this challenging task. In this study, we propose a novel method, called Class-Specific Semantic Reconstruction (CSSR), that integrates the power of AE and prototype learning. Specifically, CSSR replaces prototype points with manifolds represented by class-specific AEs. Unlike conventional prototype-based methods, CSSR models each known class on an individual AE manifold, and measures class belongingness through AE's reconstruction error. Class-specific AEs are plugged into the top of the DNN backbone and reconstruct the semantic representations learned by the DNN instead of the raw image. Through end-to-end learning, the DNN and the AEs boost each other to learn both discriminative and representative information. The results of experiments conducted on multiple datasets show that the proposed method achieves outstanding performance in both close and open set recognition and is sufficiently simple and flexible to incorporate into existing frameworks.</description><subject>Artificial neural networks</subject><subject>auto-encoder</subject><subject>class-specific semantic reconstruction</subject><subject>Classification</subject><subject>Coders</subject><subject>Image recognition</subject><subject>Image reconstruction</subject><subject>Machine learning</subject><subject>Manifolds</subject><subject>open set recognition</subject><subject>prototype learning</subject><subject>Prototypes</subject><subject>Recognition</subject><subject>Reconstruction</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>Training</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtKA0EQRRtRTIz-gIIE3LiZWP2a6V5JCD4CkYiJ66anUyMT5hGnZxb-vZ2HWbiqgnvqUhxCrimMKAX9sHwfv01HDBgbcQbAlTghfaq5jrjk-pT0gcYsUoqpHrnwfg1AhQR-Tnpcai2kSPrkcVJY76PFBl2e5W64wNJWbVg-0NWVb5vOtXldDbO6Gc43WAWg3WVfVb4NLslZZguPV4c5IJ_PT8vJazSbv0wn41nkuKRtpCVYJ7JUKOYslwJA81RZTCmP4wwlIhMCVlSk1oHOdMxFeNFSkCkmMSg-IPf73k1Tf3foW1Pm3mFR2ArrzhuWgEyEDs0BvfuHruuuqcJ3gVJCSsliESi2p1xTe99gZjZNXtrmx1AwW71mp9ds9ZqD3nB0e6ju0hJXx5M_nwG42QM5Ih5jrWJBgfJfMsZ8mQ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Huang, Hongzhi</creator><creator>Wang, Yu</creator><creator>Hu, Qinghua</creator><creator>Cheng, Ming-Ming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4788-8655</orcidid><orcidid>https://orcid.org/0000-0001-7765-8095</orcidid><orcidid>https://orcid.org/0000-0001-5550-8758</orcidid></search><sort><creationdate>20230401</creationdate><title>Class-Specific Semantic Reconstruction for Open Set Recognition</title><author>Huang, Hongzhi ; Wang, Yu ; Hu, Qinghua ; Cheng, Ming-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-950ac4fb482ca3540093b8aeb1366fe5ee2440d14bac09f9634599a105be76083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>auto-encoder</topic><topic>class-specific semantic reconstruction</topic><topic>Classification</topic><topic>Coders</topic><topic>Image recognition</topic><topic>Image reconstruction</topic><topic>Machine learning</topic><topic>Manifolds</topic><topic>open set recognition</topic><topic>prototype learning</topic><topic>Prototypes</topic><topic>Recognition</topic><topic>Reconstruction</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hongzhi</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Hu, Qinghua</creatorcontrib><creatorcontrib>Cheng, Ming-Ming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Hongzhi</au><au>Wang, Yu</au><au>Hu, Qinghua</au><au>Cheng, Ming-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Class-Specific Semantic Reconstruction for Open Set Recognition</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>45</volume><issue>4</issue><spage>4214</spage><epage>4228</epage><pages>4214-4228</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Open set recognition enables deep neural networks (DNNs) to identify samples of unknown classes, while maintaining high classification accuracy on samples of known classes. Existing methods based on auto-encoder (AE) and prototype learning show great potential in handling this challenging task. In this study, we propose a novel method, called Class-Specific Semantic Reconstruction (CSSR), that integrates the power of AE and prototype learning. Specifically, CSSR replaces prototype points with manifolds represented by class-specific AEs. Unlike conventional prototype-based methods, CSSR models each known class on an individual AE manifold, and measures class belongingness through AE's reconstruction error. Class-specific AEs are plugged into the top of the DNN backbone and reconstruct the semantic representations learned by the DNN instead of the raw image. Through end-to-end learning, the DNN and the AEs boost each other to learn both discriminative and representative information. The results of experiments conducted on multiple datasets show that the proposed method achieves outstanding performance in both close and open set recognition and is sufficiently simple and flexible to incorporate into existing frameworks.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35994547</pmid><doi>10.1109/TPAMI.2022.3200384</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4788-8655</orcidid><orcidid>https://orcid.org/0000-0001-7765-8095</orcidid><orcidid>https://orcid.org/0000-0001-5550-8758</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2023-04, Vol.45 (4), p.4214-4228 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_proquest_journals_2784555264 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks auto-encoder class-specific semantic reconstruction Classification Coders Image recognition Image reconstruction Machine learning Manifolds open set recognition prototype learning Prototypes Recognition Reconstruction Semantics Task analysis Training |
title | Class-Specific Semantic Reconstruction for Open Set Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T06%3A11%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Class-Specific%20Semantic%20Reconstruction%20for%20Open%20Set%20Recognition&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Huang,%20Hongzhi&rft.date=2023-04-01&rft.volume=45&rft.issue=4&rft.spage=4214&rft.epage=4228&rft.pages=4214-4228&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2022.3200384&rft_dat=%3Cproquest_RIE%3E2705749540%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784555264&rft_id=info:pmid/35994547&rft_ieee_id=9864101&rfr_iscdi=true |