Class-Specific Semantic Reconstruction for Open Set Recognition

Open set recognition enables deep neural networks (DNNs) to identify samples of unknown classes, while maintaining high classification accuracy on samples of known classes. Existing methods based on auto-encoder (AE) and prototype learning show great potential in handling this challenging task. In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2023-04, Vol.45 (4), p.4214-4228
Hauptverfasser: Huang, Hongzhi, Wang, Yu, Hu, Qinghua, Cheng, Ming-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4228
container_issue 4
container_start_page 4214
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 45
creator Huang, Hongzhi
Wang, Yu
Hu, Qinghua
Cheng, Ming-Ming
description Open set recognition enables deep neural networks (DNNs) to identify samples of unknown classes, while maintaining high classification accuracy on samples of known classes. Existing methods based on auto-encoder (AE) and prototype learning show great potential in handling this challenging task. In this study, we propose a novel method, called Class-Specific Semantic Reconstruction (CSSR), that integrates the power of AE and prototype learning. Specifically, CSSR replaces prototype points with manifolds represented by class-specific AEs. Unlike conventional prototype-based methods, CSSR models each known class on an individual AE manifold, and measures class belongingness through AE's reconstruction error. Class-specific AEs are plugged into the top of the DNN backbone and reconstruct the semantic representations learned by the DNN instead of the raw image. Through end-to-end learning, the DNN and the AEs boost each other to learn both discriminative and representative information. The results of experiments conducted on multiple datasets show that the proposed method achieves outstanding performance in both close and open set recognition and is sufficiently simple and flexible to incorporate into existing frameworks.
doi_str_mv 10.1109/TPAMI.2022.3200384
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2784555264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9864101</ieee_id><sourcerecordid>2705749540</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-950ac4fb482ca3540093b8aeb1366fe5ee2440d14bac09f9634599a105be76083</originalsourceid><addsrcrecordid>eNpdkMtKA0EQRRtRTIz-gIIE3LiZWP2a6V5JCD4CkYiJ66anUyMT5hGnZxb-vZ2HWbiqgnvqUhxCrimMKAX9sHwfv01HDBgbcQbAlTghfaq5jrjk-pT0gcYsUoqpHrnwfg1AhQR-Tnpcai2kSPrkcVJY76PFBl2e5W64wNJWbVg-0NWVb5vOtXldDbO6Gc43WAWg3WVfVb4NLslZZguPV4c5IJ_PT8vJazSbv0wn41nkuKRtpCVYJ7JUKOYslwJA81RZTCmP4wwlIhMCVlSk1oHOdMxFeNFSkCkmMSg-IPf73k1Tf3foW1Pm3mFR2ArrzhuWgEyEDs0BvfuHruuuqcJ3gVJCSsliESi2p1xTe99gZjZNXtrmx1AwW71mp9ds9ZqD3nB0e6ju0hJXx5M_nwG42QM5Ih5jrWJBgfJfMsZ8mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784555264</pqid></control><display><type>article</type><title>Class-Specific Semantic Reconstruction for Open Set Recognition</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Hongzhi ; Wang, Yu ; Hu, Qinghua ; Cheng, Ming-Ming</creator><creatorcontrib>Huang, Hongzhi ; Wang, Yu ; Hu, Qinghua ; Cheng, Ming-Ming</creatorcontrib><description>Open set recognition enables deep neural networks (DNNs) to identify samples of unknown classes, while maintaining high classification accuracy on samples of known classes. Existing methods based on auto-encoder (AE) and prototype learning show great potential in handling this challenging task. In this study, we propose a novel method, called Class-Specific Semantic Reconstruction (CSSR), that integrates the power of AE and prototype learning. Specifically, CSSR replaces prototype points with manifolds represented by class-specific AEs. Unlike conventional prototype-based methods, CSSR models each known class on an individual AE manifold, and measures class belongingness through AE's reconstruction error. Class-specific AEs are plugged into the top of the DNN backbone and reconstruct the semantic representations learned by the DNN instead of the raw image. Through end-to-end learning, the DNN and the AEs boost each other to learn both discriminative and representative information. The results of experiments conducted on multiple datasets show that the proposed method achieves outstanding performance in both close and open set recognition and is sufficiently simple and flexible to incorporate into existing frameworks.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2022.3200384</identifier><identifier>PMID: 35994547</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; auto-encoder ; class-specific semantic reconstruction ; Classification ; Coders ; Image recognition ; Image reconstruction ; Machine learning ; Manifolds ; open set recognition ; prototype learning ; Prototypes ; Recognition ; Reconstruction ; Semantics ; Task analysis ; Training</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2023-04, Vol.45 (4), p.4214-4228</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-950ac4fb482ca3540093b8aeb1366fe5ee2440d14bac09f9634599a105be76083</citedby><cites>FETCH-LOGICAL-c351t-950ac4fb482ca3540093b8aeb1366fe5ee2440d14bac09f9634599a105be76083</cites><orcidid>0000-0002-4788-8655 ; 0000-0001-7765-8095 ; 0000-0001-5550-8758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9864101$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9864101$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35994547$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Hongzhi</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Hu, Qinghua</creatorcontrib><creatorcontrib>Cheng, Ming-Ming</creatorcontrib><title>Class-Specific Semantic Reconstruction for Open Set Recognition</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Open set recognition enables deep neural networks (DNNs) to identify samples of unknown classes, while maintaining high classification accuracy on samples of known classes. Existing methods based on auto-encoder (AE) and prototype learning show great potential in handling this challenging task. In this study, we propose a novel method, called Class-Specific Semantic Reconstruction (CSSR), that integrates the power of AE and prototype learning. Specifically, CSSR replaces prototype points with manifolds represented by class-specific AEs. Unlike conventional prototype-based methods, CSSR models each known class on an individual AE manifold, and measures class belongingness through AE's reconstruction error. Class-specific AEs are plugged into the top of the DNN backbone and reconstruct the semantic representations learned by the DNN instead of the raw image. Through end-to-end learning, the DNN and the AEs boost each other to learn both discriminative and representative information. The results of experiments conducted on multiple datasets show that the proposed method achieves outstanding performance in both close and open set recognition and is sufficiently simple and flexible to incorporate into existing frameworks.</description><subject>Artificial neural networks</subject><subject>auto-encoder</subject><subject>class-specific semantic reconstruction</subject><subject>Classification</subject><subject>Coders</subject><subject>Image recognition</subject><subject>Image reconstruction</subject><subject>Machine learning</subject><subject>Manifolds</subject><subject>open set recognition</subject><subject>prototype learning</subject><subject>Prototypes</subject><subject>Recognition</subject><subject>Reconstruction</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>Training</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtKA0EQRRtRTIz-gIIE3LiZWP2a6V5JCD4CkYiJ66anUyMT5hGnZxb-vZ2HWbiqgnvqUhxCrimMKAX9sHwfv01HDBgbcQbAlTghfaq5jrjk-pT0gcYsUoqpHrnwfg1AhQR-Tnpcai2kSPrkcVJY76PFBl2e5W64wNJWbVg-0NWVb5vOtXldDbO6Gc43WAWg3WVfVb4NLslZZguPV4c5IJ_PT8vJazSbv0wn41nkuKRtpCVYJ7JUKOYslwJA81RZTCmP4wwlIhMCVlSk1oHOdMxFeNFSkCkmMSg-IPf73k1Tf3foW1Pm3mFR2ArrzhuWgEyEDs0BvfuHruuuqcJ3gVJCSsliESi2p1xTe99gZjZNXtrmx1AwW71mp9ds9ZqD3nB0e6ju0hJXx5M_nwG42QM5Ih5jrWJBgfJfMsZ8mQ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Huang, Hongzhi</creator><creator>Wang, Yu</creator><creator>Hu, Qinghua</creator><creator>Cheng, Ming-Ming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4788-8655</orcidid><orcidid>https://orcid.org/0000-0001-7765-8095</orcidid><orcidid>https://orcid.org/0000-0001-5550-8758</orcidid></search><sort><creationdate>20230401</creationdate><title>Class-Specific Semantic Reconstruction for Open Set Recognition</title><author>Huang, Hongzhi ; Wang, Yu ; Hu, Qinghua ; Cheng, Ming-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-950ac4fb482ca3540093b8aeb1366fe5ee2440d14bac09f9634599a105be76083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>auto-encoder</topic><topic>class-specific semantic reconstruction</topic><topic>Classification</topic><topic>Coders</topic><topic>Image recognition</topic><topic>Image reconstruction</topic><topic>Machine learning</topic><topic>Manifolds</topic><topic>open set recognition</topic><topic>prototype learning</topic><topic>Prototypes</topic><topic>Recognition</topic><topic>Reconstruction</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hongzhi</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Hu, Qinghua</creatorcontrib><creatorcontrib>Cheng, Ming-Ming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Hongzhi</au><au>Wang, Yu</au><au>Hu, Qinghua</au><au>Cheng, Ming-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Class-Specific Semantic Reconstruction for Open Set Recognition</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>45</volume><issue>4</issue><spage>4214</spage><epage>4228</epage><pages>4214-4228</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Open set recognition enables deep neural networks (DNNs) to identify samples of unknown classes, while maintaining high classification accuracy on samples of known classes. Existing methods based on auto-encoder (AE) and prototype learning show great potential in handling this challenging task. In this study, we propose a novel method, called Class-Specific Semantic Reconstruction (CSSR), that integrates the power of AE and prototype learning. Specifically, CSSR replaces prototype points with manifolds represented by class-specific AEs. Unlike conventional prototype-based methods, CSSR models each known class on an individual AE manifold, and measures class belongingness through AE's reconstruction error. Class-specific AEs are plugged into the top of the DNN backbone and reconstruct the semantic representations learned by the DNN instead of the raw image. Through end-to-end learning, the DNN and the AEs boost each other to learn both discriminative and representative information. The results of experiments conducted on multiple datasets show that the proposed method achieves outstanding performance in both close and open set recognition and is sufficiently simple and flexible to incorporate into existing frameworks.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>35994547</pmid><doi>10.1109/TPAMI.2022.3200384</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4788-8655</orcidid><orcidid>https://orcid.org/0000-0001-7765-8095</orcidid><orcidid>https://orcid.org/0000-0001-5550-8758</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2023-04, Vol.45 (4), p.4214-4228
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_journals_2784555264
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
auto-encoder
class-specific semantic reconstruction
Classification
Coders
Image recognition
Image reconstruction
Machine learning
Manifolds
open set recognition
prototype learning
Prototypes
Recognition
Reconstruction
Semantics
Task analysis
Training
title Class-Specific Semantic Reconstruction for Open Set Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T06%3A11%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Class-Specific%20Semantic%20Reconstruction%20for%20Open%20Set%20Recognition&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Huang,%20Hongzhi&rft.date=2023-04-01&rft.volume=45&rft.issue=4&rft.spage=4214&rft.epage=4228&rft.pages=4214-4228&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2022.3200384&rft_dat=%3Cproquest_RIE%3E2705749540%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784555264&rft_id=info:pmid/35994547&rft_ieee_id=9864101&rfr_iscdi=true