Comparison of real-time and batch job recommendations
Collaborative filtering recommendation systems are traditionally trained in a batch manner, and are designed to produce personalized recommendations for a large number of users at the same time. However, in many industrial use-cases, it is reasonable to produce recommendations in real-time, taking a...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Kwiecinski, Robert Melniczak, Grzegorz Gorecki, Tomasz |
description | Collaborative filtering recommendation systems are traditionally trained in a batch manner, and are designed to produce personalized recommendations for a large number of users at the same time. However, in many industrial use-cases, it is reasonable to produce recommendations in real-time, taking account of very recent user interactions. In this work, we present the implementation of batch and real-time recommendation systems using the example of the RP3Beta model, a simple scalable graph-based model that outperforms multiple more advanced models. Our approach can be utilized by any recommendation system if user-to-item recommendations can be obtained based on item-to-item recommendations. We show that it covers multiple common recommendation models, especially collaborative filtering approaches where user features are not available. We also provide the results of A/B tests comparing these two approaches in a real-world scenario of a job recommendation task, conducted with almost 200,000 OLX users. We believe that our results can help other organizations to take informed decisions about whether to make the effort of moving from a batch to a real-time recommendation setting. |
doi_str_mv | 10.1109/ACCESS.2023.3249356 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2784554816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10054029</ieee_id><doaj_id>oai_doaj_org_article_f70bf44f075d4111a0ac74dd906ccdc5</doaj_id><sourcerecordid>2784554816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-6b71e0776059cb4e9f29b0aeb6cfad5012e8d459ddde1400efa13bea7217e6c03</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsNR-Aj0EPKfO_st2jyVULRQ8VM_LZndWU5ps3aQHv72pKdK5zPCY92b4EXJPYU4p6KdlWa622zkDxuecCc1lcUUmjBY655IX1xfzLZl13Q6GWgySVBMiy9gcbKq72GYxZAntPu_rBjPb-qyyvfvKdrEadBebBltv-zq23R25CXbf4ezcp-TjefVevuabt5d1udzkToDu86JSFEGpAqR2lUAdmK7AYlW4YL0EynDhhdTee6QCAIOlvEKrGFVYOOBTsh5zfbQ7c0h1Y9OPibY2f0JMn8amvnZ7NEFBFYQIoKQXlFIL1inhvYbCOe_kkPU4Zh1S_D5i15tdPKZ2eN8wtRBSioHJsMXHLZdi1yUM_1cpmBNuM-I2J9zmjHtwPYyuGhEvHCAFMM1_Aa6pev0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784554816</pqid></control><display><type>article</type><title>Comparison of real-time and batch job recommendations</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kwiecinski, Robert ; Melniczak, Grzegorz ; Gorecki, Tomasz</creator><creatorcontrib>Kwiecinski, Robert ; Melniczak, Grzegorz ; Gorecki, Tomasz</creatorcontrib><description>Collaborative filtering recommendation systems are traditionally trained in a batch manner, and are designed to produce personalized recommendations for a large number of users at the same time. However, in many industrial use-cases, it is reasonable to produce recommendations in real-time, taking account of very recent user interactions. In this work, we present the implementation of batch and real-time recommendation systems using the example of the RP3Beta model, a simple scalable graph-based model that outperforms multiple more advanced models. Our approach can be utilized by any recommendation system if user-to-item recommendations can be obtained based on item-to-item recommendations. We show that it covers multiple common recommendation models, especially collaborative filtering approaches where user features are not available. We also provide the results of A/B tests comparing these two approaches in a real-world scenario of a job recommendation task, conducted with almost 200,000 OLX users. We believe that our results can help other organizations to take informed decisions about whether to make the effort of moving from a batch to a real-time recommendation setting.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3249356</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>A/B tests ; Blogs ; Collaboration ; Collaborative filtering ; Filtration ; Industrial applications ; job recommendations ; Multimedia Web sites ; Real time ; real-time recommendations ; Real-time systems ; Recommender systems ; RP3Beta ; Social networking (online) ; Sparse matrices</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-6b71e0776059cb4e9f29b0aeb6cfad5012e8d459ddde1400efa13bea7217e6c03</citedby><cites>FETCH-LOGICAL-c409t-6b71e0776059cb4e9f29b0aeb6cfad5012e8d459ddde1400efa13bea7217e6c03</cites><orcidid>0000-0003-4443-3281 ; 0009-0000-8986-4144 ; 0000-0002-9969-5257</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10054029$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27610,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Kwiecinski, Robert</creatorcontrib><creatorcontrib>Melniczak, Grzegorz</creatorcontrib><creatorcontrib>Gorecki, Tomasz</creatorcontrib><title>Comparison of real-time and batch job recommendations</title><title>IEEE access</title><addtitle>Access</addtitle><description>Collaborative filtering recommendation systems are traditionally trained in a batch manner, and are designed to produce personalized recommendations for a large number of users at the same time. However, in many industrial use-cases, it is reasonable to produce recommendations in real-time, taking account of very recent user interactions. In this work, we present the implementation of batch and real-time recommendation systems using the example of the RP3Beta model, a simple scalable graph-based model that outperforms multiple more advanced models. Our approach can be utilized by any recommendation system if user-to-item recommendations can be obtained based on item-to-item recommendations. We show that it covers multiple common recommendation models, especially collaborative filtering approaches where user features are not available. We also provide the results of A/B tests comparing these two approaches in a real-world scenario of a job recommendation task, conducted with almost 200,000 OLX users. We believe that our results can help other organizations to take informed decisions about whether to make the effort of moving from a batch to a real-time recommendation setting.</description><subject>A/B tests</subject><subject>Blogs</subject><subject>Collaboration</subject><subject>Collaborative filtering</subject><subject>Filtration</subject><subject>Industrial applications</subject><subject>job recommendations</subject><subject>Multimedia Web sites</subject><subject>Real time</subject><subject>real-time recommendations</subject><subject>Real-time systems</subject><subject>Recommender systems</subject><subject>RP3Beta</subject><subject>Social networking (online)</subject><subject>Sparse matrices</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkE9Lw0AQxRdRsNR-Aj0EPKfO_st2jyVULRQ8VM_LZndWU5ps3aQHv72pKdK5zPCY92b4EXJPYU4p6KdlWa622zkDxuecCc1lcUUmjBY655IX1xfzLZl13Q6GWgySVBMiy9gcbKq72GYxZAntPu_rBjPb-qyyvfvKdrEadBebBltv-zq23R25CXbf4ezcp-TjefVevuabt5d1udzkToDu86JSFEGpAqR2lUAdmK7AYlW4YL0EynDhhdTee6QCAIOlvEKrGFVYOOBTsh5zfbQ7c0h1Y9OPibY2f0JMn8amvnZ7NEFBFYQIoKQXlFIL1inhvYbCOe_kkPU4Zh1S_D5i15tdPKZ2eN8wtRBSioHJsMXHLZdi1yUM_1cpmBNuM-I2J9zmjHtwPYyuGhEvHCAFMM1_Aa6pev0</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Kwiecinski, Robert</creator><creator>Melniczak, Grzegorz</creator><creator>Gorecki, Tomasz</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4443-3281</orcidid><orcidid>https://orcid.org/0009-0000-8986-4144</orcidid><orcidid>https://orcid.org/0000-0002-9969-5257</orcidid></search><sort><creationdate>20230101</creationdate><title>Comparison of real-time and batch job recommendations</title><author>Kwiecinski, Robert ; Melniczak, Grzegorz ; Gorecki, Tomasz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-6b71e0776059cb4e9f29b0aeb6cfad5012e8d459ddde1400efa13bea7217e6c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>A/B tests</topic><topic>Blogs</topic><topic>Collaboration</topic><topic>Collaborative filtering</topic><topic>Filtration</topic><topic>Industrial applications</topic><topic>job recommendations</topic><topic>Multimedia Web sites</topic><topic>Real time</topic><topic>real-time recommendations</topic><topic>Real-time systems</topic><topic>Recommender systems</topic><topic>RP3Beta</topic><topic>Social networking (online)</topic><topic>Sparse matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwiecinski, Robert</creatorcontrib><creatorcontrib>Melniczak, Grzegorz</creatorcontrib><creatorcontrib>Gorecki, Tomasz</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwiecinski, Robert</au><au>Melniczak, Grzegorz</au><au>Gorecki, Tomasz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of real-time and batch job recommendations</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Collaborative filtering recommendation systems are traditionally trained in a batch manner, and are designed to produce personalized recommendations for a large number of users at the same time. However, in many industrial use-cases, it is reasonable to produce recommendations in real-time, taking account of very recent user interactions. In this work, we present the implementation of batch and real-time recommendation systems using the example of the RP3Beta model, a simple scalable graph-based model that outperforms multiple more advanced models. Our approach can be utilized by any recommendation system if user-to-item recommendations can be obtained based on item-to-item recommendations. We show that it covers multiple common recommendation models, especially collaborative filtering approaches where user features are not available. We also provide the results of A/B tests comparing these two approaches in a real-world scenario of a job recommendation task, conducted with almost 200,000 OLX users. We believe that our results can help other organizations to take informed decisions about whether to make the effort of moving from a batch to a real-time recommendation setting.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3249356</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4443-3281</orcidid><orcidid>https://orcid.org/0009-0000-8986-4144</orcidid><orcidid>https://orcid.org/0000-0002-9969-5257</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2784554816 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | A/B tests Blogs Collaboration Collaborative filtering Filtration Industrial applications job recommendations Multimedia Web sites Real time real-time recommendations Real-time systems Recommender systems RP3Beta Social networking (online) Sparse matrices |
title | Comparison of real-time and batch job recommendations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A28%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20real-time%20and%20batch%20job%20recommendations&rft.jtitle=IEEE%20access&rft.au=Kwiecinski,%20Robert&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3249356&rft_dat=%3Cproquest_ieee_%3E2784554816%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784554816&rft_id=info:pmid/&rft_ieee_id=10054029&rft_doaj_id=oai_doaj_org_article_f70bf44f075d4111a0ac74dd906ccdc5&rfr_iscdi=true |