Six-Dimensional Target Pose Estimation for Robot Autonomous Manipulation: Methodology and Verification

The autonomous and precise grasping operation of robots is considered challenging in situations where there are different objects with different shapes and postures. In this study, we proposed a method of 6-D target pose estimation for robot autonomous manipulation. The proposed method is based on:...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cognitive and developmental systems 2023-03, Vol.15 (1), p.186-197
Hauptverfasser: Wang, Rui, Su, Congjia, Yu, Hao, Wang, Shuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 197
container_issue 1
container_start_page 186
container_title IEEE transactions on cognitive and developmental systems
container_volume 15
creator Wang, Rui
Su, Congjia
Yu, Hao
Wang, Shuo
description The autonomous and precise grasping operation of robots is considered challenging in situations where there are different objects with different shapes and postures. In this study, we proposed a method of 6-D target pose estimation for robot autonomous manipulation. The proposed method is based on: 1) a fully convolutional neural network for scene semantic segmentation and 2) fast global registration to achieve target pose estimation. To verify the validity of the proposed algorithm, we built a robot grasping operation system and used the point cloud model of the target object and its pose estimation results to generate the robot grasping posture control strategy. Experimental results showed that the proposed method can achieve a six-degree-of-freedom pose estimation for arbitrarily placed target objects and complete the autonomous grasping of the target. Comparative experiments demonstrated that the proposed target pose estimation method achieved a significant improvement in average accuracy and real-time performance compared with traditional methods.
doi_str_mv 10.1109/TCDS.2022.3151331
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2784550555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9714272</ieee_id><sourcerecordid>2784550555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-4396937d3864f39542f73ea8df51f12df011b5b98a86e47ae276ae0f485750a53</originalsourceid><addsrcrecordid>eNo9kE1rAjEURUNpodL6A0o3ga7H5nMy6U7UfoDSUm23ITqJjYwTm2Sg_vvOqLh6D965D-4B4A6jAcZIPi5G4_mAIEIGFHNMKb4APUKFzApJ5eV5J-ga9GPcIIRwTkXBRA_YufvLxm5r6uh8rSu40GFtEvzw0cBJTG6rU3uA1gf46Zc-wWGTfO23volwpmu3a6oD8QRnJv340ld-vYe6LuG3Cc661eF6C66srqLpn-YN-HqeLEav2fT95W00nGYrImnKGJW5pKKkRc4slZwRK6jRRWk5tpiUFmG85EtZ6CI3TGhDRK4NsqzggiPN6Q14OP7dBf_bmJjUxjeh7RUVaQtzjjjvKHykVsHHGIxVu9AWDXuFkeqMqs6o6oyqk9E2c3_MOGPMmZcCMyII_QdkU3Ih</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784550555</pqid></control><display><type>article</type><title>Six-Dimensional Target Pose Estimation for Robot Autonomous Manipulation: Methodology and Verification</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Rui ; Su, Congjia ; Yu, Hao ; Wang, Shuo</creator><creatorcontrib>Wang, Rui ; Su, Congjia ; Yu, Hao ; Wang, Shuo</creatorcontrib><description>The autonomous and precise grasping operation of robots is considered challenging in situations where there are different objects with different shapes and postures. In this study, we proposed a method of 6-D target pose estimation for robot autonomous manipulation. The proposed method is based on: 1) a fully convolutional neural network for scene semantic segmentation and 2) fast global registration to achieve target pose estimation. To verify the validity of the proposed algorithm, we built a robot grasping operation system and used the point cloud model of the target object and its pose estimation results to generate the robot grasping posture control strategy. Experimental results showed that the proposed method can achieve a six-degree-of-freedom pose estimation for arbitrarily placed target objects and complete the autonomous grasping of the target. Comparative experiments demonstrated that the proposed target pose estimation method achieved a significant improvement in average accuracy and real-time performance compared with traditional methods.</description><identifier>ISSN: 2379-8920</identifier><identifier>EISSN: 2379-8939</identifier><identifier>DOI: 10.1109/TCDS.2022.3151331</identifier><identifier>CODEN: ITCDA4</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Artificial neural networks ; Autonomous manipulation ; Convolution ; Grasping ; Grasping (robotics) ; Image segmentation ; Point cloud compression ; Pose estimation ; robot ; Robot control ; Robots ; semantic segmentation ; Semantics ; target pose estimation ; Three dimensional models</subject><ispartof>IEEE transactions on cognitive and developmental systems, 2023-03, Vol.15 (1), p.186-197</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-4396937d3864f39542f73ea8df51f12df011b5b98a86e47ae276ae0f485750a53</citedby><cites>FETCH-LOGICAL-c293t-4396937d3864f39542f73ea8df51f12df011b5b98a86e47ae276ae0f485750a53</cites><orcidid>0000-0002-1390-9219 ; 0000-0003-3172-3167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9714272$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9714272$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Su, Congjia</creatorcontrib><creatorcontrib>Yu, Hao</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><title>Six-Dimensional Target Pose Estimation for Robot Autonomous Manipulation: Methodology and Verification</title><title>IEEE transactions on cognitive and developmental systems</title><addtitle>TCDS</addtitle><description>The autonomous and precise grasping operation of robots is considered challenging in situations where there are different objects with different shapes and postures. In this study, we proposed a method of 6-D target pose estimation for robot autonomous manipulation. The proposed method is based on: 1) a fully convolutional neural network for scene semantic segmentation and 2) fast global registration to achieve target pose estimation. To verify the validity of the proposed algorithm, we built a robot grasping operation system and used the point cloud model of the target object and its pose estimation results to generate the robot grasping posture control strategy. Experimental results showed that the proposed method can achieve a six-degree-of-freedom pose estimation for arbitrarily placed target objects and complete the autonomous grasping of the target. Comparative experiments demonstrated that the proposed target pose estimation method achieved a significant improvement in average accuracy and real-time performance compared with traditional methods.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Autonomous manipulation</subject><subject>Convolution</subject><subject>Grasping</subject><subject>Grasping (robotics)</subject><subject>Image segmentation</subject><subject>Point cloud compression</subject><subject>Pose estimation</subject><subject>robot</subject><subject>Robot control</subject><subject>Robots</subject><subject>semantic segmentation</subject><subject>Semantics</subject><subject>target pose estimation</subject><subject>Three dimensional models</subject><issn>2379-8920</issn><issn>2379-8939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1rAjEURUNpodL6A0o3ga7H5nMy6U7UfoDSUm23ITqJjYwTm2Sg_vvOqLh6D965D-4B4A6jAcZIPi5G4_mAIEIGFHNMKb4APUKFzApJ5eV5J-ga9GPcIIRwTkXBRA_YufvLxm5r6uh8rSu40GFtEvzw0cBJTG6rU3uA1gf46Zc-wWGTfO23volwpmu3a6oD8QRnJv340ld-vYe6LuG3Cc661eF6C66srqLpn-YN-HqeLEav2fT95W00nGYrImnKGJW5pKKkRc4slZwRK6jRRWk5tpiUFmG85EtZ6CI3TGhDRK4NsqzggiPN6Q14OP7dBf_bmJjUxjeh7RUVaQtzjjjvKHykVsHHGIxVu9AWDXuFkeqMqs6o6oyqk9E2c3_MOGPMmZcCMyII_QdkU3Ih</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Wang, Rui</creator><creator>Su, Congjia</creator><creator>Yu, Hao</creator><creator>Wang, Shuo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1390-9219</orcidid><orcidid>https://orcid.org/0000-0003-3172-3167</orcidid></search><sort><creationdate>20230301</creationdate><title>Six-Dimensional Target Pose Estimation for Robot Autonomous Manipulation: Methodology and Verification</title><author>Wang, Rui ; Su, Congjia ; Yu, Hao ; Wang, Shuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-4396937d3864f39542f73ea8df51f12df011b5b98a86e47ae276ae0f485750a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Autonomous manipulation</topic><topic>Convolution</topic><topic>Grasping</topic><topic>Grasping (robotics)</topic><topic>Image segmentation</topic><topic>Point cloud compression</topic><topic>Pose estimation</topic><topic>robot</topic><topic>Robot control</topic><topic>Robots</topic><topic>semantic segmentation</topic><topic>Semantics</topic><topic>target pose estimation</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Rui</creatorcontrib><creatorcontrib>Su, Congjia</creatorcontrib><creatorcontrib>Yu, Hao</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cognitive and developmental systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Rui</au><au>Su, Congjia</au><au>Yu, Hao</au><au>Wang, Shuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Six-Dimensional Target Pose Estimation for Robot Autonomous Manipulation: Methodology and Verification</atitle><jtitle>IEEE transactions on cognitive and developmental systems</jtitle><stitle>TCDS</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>15</volume><issue>1</issue><spage>186</spage><epage>197</epage><pages>186-197</pages><issn>2379-8920</issn><eissn>2379-8939</eissn><coden>ITCDA4</coden><abstract>The autonomous and precise grasping operation of robots is considered challenging in situations where there are different objects with different shapes and postures. In this study, we proposed a method of 6-D target pose estimation for robot autonomous manipulation. The proposed method is based on: 1) a fully convolutional neural network for scene semantic segmentation and 2) fast global registration to achieve target pose estimation. To verify the validity of the proposed algorithm, we built a robot grasping operation system and used the point cloud model of the target object and its pose estimation results to generate the robot grasping posture control strategy. Experimental results showed that the proposed method can achieve a six-degree-of-freedom pose estimation for arbitrarily placed target objects and complete the autonomous grasping of the target. Comparative experiments demonstrated that the proposed target pose estimation method achieved a significant improvement in average accuracy and real-time performance compared with traditional methods.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TCDS.2022.3151331</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1390-9219</orcidid><orcidid>https://orcid.org/0000-0003-3172-3167</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2379-8920
ispartof IEEE transactions on cognitive and developmental systems, 2023-03, Vol.15 (1), p.186-197
issn 2379-8920
2379-8939
language eng
recordid cdi_proquest_journals_2784550555
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial neural networks
Autonomous manipulation
Convolution
Grasping
Grasping (robotics)
Image segmentation
Point cloud compression
Pose estimation
robot
Robot control
Robots
semantic segmentation
Semantics
target pose estimation
Three dimensional models
title Six-Dimensional Target Pose Estimation for Robot Autonomous Manipulation: Methodology and Verification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T00%3A05%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Six-Dimensional%20Target%20Pose%20Estimation%20for%20Robot%20Autonomous%20Manipulation:%20Methodology%20and%20Verification&rft.jtitle=IEEE%20transactions%20on%20cognitive%20and%20developmental%20systems&rft.au=Wang,%20Rui&rft.date=2023-03-01&rft.volume=15&rft.issue=1&rft.spage=186&rft.epage=197&rft.pages=186-197&rft.issn=2379-8920&rft.eissn=2379-8939&rft.coden=ITCDA4&rft_id=info:doi/10.1109/TCDS.2022.3151331&rft_dat=%3Cproquest_RIE%3E2784550555%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784550555&rft_id=info:pmid/&rft_ieee_id=9714272&rfr_iscdi=true