Design Tradeoffs in CXL-Based Memory Pools for Public Cloud Platforms

DRAM is a key driver of performance and cost in public cloud servers. At the same time, a significant amount of DRAM is underutilized due to fragmented use across servers. Emerging interconnects such as CXL offer a path towards improving utilization through memory pooling. However, the design space...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE MICRO 2023-03, Vol.43 (2), p.1-10
Hauptverfasser: Berger, Daniel S., Ernst, Daniel, Li, Huaicheng, Zardoshti, Pantea, Shah, Monish, Rajadnya, Samir, Lee, Scott, Hsu, Lisa, Agarwal, Ishwar, Hill, Mark D., Bianchini, Ricardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2
container_start_page 1
container_title IEEE MICRO
container_volume 43
creator Berger, Daniel S.
Ernst, Daniel
Li, Huaicheng
Zardoshti, Pantea
Shah, Monish
Rajadnya, Samir
Lee, Scott
Hsu, Lisa
Agarwal, Ishwar
Hill, Mark D.
Bianchini, Ricardo
description DRAM is a key driver of performance and cost in public cloud servers. At the same time, a significant amount of DRAM is underutilized due to fragmented use across servers. Emerging interconnects such as CXL offer a path towards improving utilization through memory pooling. However, the design space of CXL-based memory systems is large, with key questions around the size, reach, and topology of the memory pool. At the same time, using pools requires navigating complex design constraints around performance, virtualization, and management. This paper discusses why cloud providers should deploy CXL memory pools, key design constraints, and observations in designing towards practical deployment. We identify configuration examples with significant positive return of investment.
doi_str_mv 10.1109/MM.2023.3241586
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2784550529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10034802</ieee_id><sourcerecordid>2784550529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-cbd3fa2c69f5faa17b8cda03b5b2e33a724bcd8bb3acf8ab590123973eae3b933</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EEqUwszBYYk5r--LaHiGUD6kRHYrEZtmOjVKldbGbof-eVO3AdNLped_TPQjdUzKhlKhpXU8YYTABVlIuZxdoRBWIoqQlXKIRYYIVVAC7Rjc5rwkhnBE5QvMXn9ufLV4l0_gYQsbtFlffi-LZZN_g2m9iOuBljF3GISa87G3XOlx1sW_wsjP7YbnJt-gqmC77u_Mco6_X-ap6Lxafbx_V06JwAHRfONtAMMzNVODBGCqsdI0hYLllHsAIVlrXSGvBuCCN5YpQBkqANx6sAhijx1PvLsXf3ue9Xsc-bYeTmglZcj58pQZqeqJcijknH_QutRuTDpoSfXSl61ofXemzqyHxcEq03vt_NIFSDtwfSkFkiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784550529</pqid></control><display><type>article</type><title>Design Tradeoffs in CXL-Based Memory Pools for Public Cloud Platforms</title><source>IEEE Electronic Library (IEL)</source><creator>Berger, Daniel S. ; Ernst, Daniel ; Li, Huaicheng ; Zardoshti, Pantea ; Shah, Monish ; Rajadnya, Samir ; Lee, Scott ; Hsu, Lisa ; Agarwal, Ishwar ; Hill, Mark D. ; Bianchini, Ricardo</creator><creatorcontrib>Berger, Daniel S. ; Ernst, Daniel ; Li, Huaicheng ; Zardoshti, Pantea ; Shah, Monish ; Rajadnya, Samir ; Lee, Scott ; Hsu, Lisa ; Agarwal, Ishwar ; Hill, Mark D. ; Bianchini, Ricardo</creatorcontrib><description>DRAM is a key driver of performance and cost in public cloud servers. At the same time, a significant amount of DRAM is underutilized due to fragmented use across servers. Emerging interconnects such as CXL offer a path towards improving utilization through memory pooling. However, the design space of CXL-based memory systems is large, with key questions around the size, reach, and topology of the memory pool. At the same time, using pools requires navigating complex design constraints around performance, virtualization, and management. This paper discusses why cloud providers should deploy CXL memory pools, key design constraints, and observations in designing towards practical deployment. We identify configuration examples with significant positive return of investment.</description><identifier>ISSN: 0272-1732</identifier><identifier>EISSN: 1937-4143</identifier><identifier>DOI: 10.1109/MM.2023.3241586</identifier><identifier>CODEN: IEMIDZ</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Bandwidth ; Cloud computing ; Costs ; Dynamic random access memory ; Hardware ; Memory management ; Pools ; Random access memory ; Servers ; Topology</subject><ispartof>IEEE MICRO, 2023-03, Vol.43 (2), p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-cbd3fa2c69f5faa17b8cda03b5b2e33a724bcd8bb3acf8ab590123973eae3b933</citedby><cites>FETCH-LOGICAL-c331t-cbd3fa2c69f5faa17b8cda03b5b2e33a724bcd8bb3acf8ab590123973eae3b933</cites><orcidid>0000-0002-3911-1512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10034802$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10034802$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Berger, Daniel S.</creatorcontrib><creatorcontrib>Ernst, Daniel</creatorcontrib><creatorcontrib>Li, Huaicheng</creatorcontrib><creatorcontrib>Zardoshti, Pantea</creatorcontrib><creatorcontrib>Shah, Monish</creatorcontrib><creatorcontrib>Rajadnya, Samir</creatorcontrib><creatorcontrib>Lee, Scott</creatorcontrib><creatorcontrib>Hsu, Lisa</creatorcontrib><creatorcontrib>Agarwal, Ishwar</creatorcontrib><creatorcontrib>Hill, Mark D.</creatorcontrib><creatorcontrib>Bianchini, Ricardo</creatorcontrib><title>Design Tradeoffs in CXL-Based Memory Pools for Public Cloud Platforms</title><title>IEEE MICRO</title><addtitle>MM</addtitle><description>DRAM is a key driver of performance and cost in public cloud servers. At the same time, a significant amount of DRAM is underutilized due to fragmented use across servers. Emerging interconnects such as CXL offer a path towards improving utilization through memory pooling. However, the design space of CXL-based memory systems is large, with key questions around the size, reach, and topology of the memory pool. At the same time, using pools requires navigating complex design constraints around performance, virtualization, and management. This paper discusses why cloud providers should deploy CXL memory pools, key design constraints, and observations in designing towards practical deployment. We identify configuration examples with significant positive return of investment.</description><subject>Bandwidth</subject><subject>Cloud computing</subject><subject>Costs</subject><subject>Dynamic random access memory</subject><subject>Hardware</subject><subject>Memory management</subject><subject>Pools</subject><subject>Random access memory</subject><subject>Servers</subject><subject>Topology</subject><issn>0272-1732</issn><issn>1937-4143</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkD1PwzAQhi0EEqUwszBYYk5r--LaHiGUD6kRHYrEZtmOjVKldbGbof-eVO3AdNLped_TPQjdUzKhlKhpXU8YYTABVlIuZxdoRBWIoqQlXKIRYYIVVAC7Rjc5rwkhnBE5QvMXn9ufLV4l0_gYQsbtFlffi-LZZN_g2m9iOuBljF3GISa87G3XOlx1sW_wsjP7YbnJt-gqmC77u_Mco6_X-ap6Lxafbx_V06JwAHRfONtAMMzNVODBGCqsdI0hYLllHsAIVlrXSGvBuCCN5YpQBkqANx6sAhijx1PvLsXf3ue9Xsc-bYeTmglZcj58pQZqeqJcijknH_QutRuTDpoSfXSl61ofXemzqyHxcEq03vt_NIFSDtwfSkFkiA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Berger, Daniel S.</creator><creator>Ernst, Daniel</creator><creator>Li, Huaicheng</creator><creator>Zardoshti, Pantea</creator><creator>Shah, Monish</creator><creator>Rajadnya, Samir</creator><creator>Lee, Scott</creator><creator>Hsu, Lisa</creator><creator>Agarwal, Ishwar</creator><creator>Hill, Mark D.</creator><creator>Bianchini, Ricardo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3911-1512</orcidid></search><sort><creationdate>20230301</creationdate><title>Design Tradeoffs in CXL-Based Memory Pools for Public Cloud Platforms</title><author>Berger, Daniel S. ; Ernst, Daniel ; Li, Huaicheng ; Zardoshti, Pantea ; Shah, Monish ; Rajadnya, Samir ; Lee, Scott ; Hsu, Lisa ; Agarwal, Ishwar ; Hill, Mark D. ; Bianchini, Ricardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-cbd3fa2c69f5faa17b8cda03b5b2e33a724bcd8bb3acf8ab590123973eae3b933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bandwidth</topic><topic>Cloud computing</topic><topic>Costs</topic><topic>Dynamic random access memory</topic><topic>Hardware</topic><topic>Memory management</topic><topic>Pools</topic><topic>Random access memory</topic><topic>Servers</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berger, Daniel S.</creatorcontrib><creatorcontrib>Ernst, Daniel</creatorcontrib><creatorcontrib>Li, Huaicheng</creatorcontrib><creatorcontrib>Zardoshti, Pantea</creatorcontrib><creatorcontrib>Shah, Monish</creatorcontrib><creatorcontrib>Rajadnya, Samir</creatorcontrib><creatorcontrib>Lee, Scott</creatorcontrib><creatorcontrib>Hsu, Lisa</creatorcontrib><creatorcontrib>Agarwal, Ishwar</creatorcontrib><creatorcontrib>Hill, Mark D.</creatorcontrib><creatorcontrib>Bianchini, Ricardo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE MICRO</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Berger, Daniel S.</au><au>Ernst, Daniel</au><au>Li, Huaicheng</au><au>Zardoshti, Pantea</au><au>Shah, Monish</au><au>Rajadnya, Samir</au><au>Lee, Scott</au><au>Hsu, Lisa</au><au>Agarwal, Ishwar</au><au>Hill, Mark D.</au><au>Bianchini, Ricardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Tradeoffs in CXL-Based Memory Pools for Public Cloud Platforms</atitle><jtitle>IEEE MICRO</jtitle><stitle>MM</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>43</volume><issue>2</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0272-1732</issn><eissn>1937-4143</eissn><coden>IEMIDZ</coden><abstract>DRAM is a key driver of performance and cost in public cloud servers. At the same time, a significant amount of DRAM is underutilized due to fragmented use across servers. Emerging interconnects such as CXL offer a path towards improving utilization through memory pooling. However, the design space of CXL-based memory systems is large, with key questions around the size, reach, and topology of the memory pool. At the same time, using pools requires navigating complex design constraints around performance, virtualization, and management. This paper discusses why cloud providers should deploy CXL memory pools, key design constraints, and observations in designing towards practical deployment. We identify configuration examples with significant positive return of investment.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/MM.2023.3241586</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3911-1512</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0272-1732
ispartof IEEE MICRO, 2023-03, Vol.43 (2), p.1-10
issn 0272-1732
1937-4143
language eng
recordid cdi_proquest_journals_2784550529
source IEEE Electronic Library (IEL)
subjects Bandwidth
Cloud computing
Costs
Dynamic random access memory
Hardware
Memory management
Pools
Random access memory
Servers
Topology
title Design Tradeoffs in CXL-Based Memory Pools for Public Cloud Platforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Tradeoffs%20in%20CXL-Based%20Memory%20Pools%20for%20Public%20Cloud%20Platforms&rft.jtitle=IEEE%20MICRO&rft.au=Berger,%20Daniel%20S.&rft.date=2023-03-01&rft.volume=43&rft.issue=2&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0272-1732&rft.eissn=1937-4143&rft.coden=IEMIDZ&rft_id=info:doi/10.1109/MM.2023.3241586&rft_dat=%3Cproquest_RIE%3E2784550529%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784550529&rft_id=info:pmid/&rft_ieee_id=10034802&rfr_iscdi=true