Attention-Guided Pyramid Context Network for Polyp Segmentation in Colonoscopy Images
Recently, deep convolutional neural networks (C-NNs) have provided us an effective tool for automated polyp segmentation in colonoscopy images. However, most CNN-based methods do not fully consider the feature interaction among different layers and often cannot provide satisfactory segmentation perf...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on instrumentation and measurement 2023-01, Vol.72, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on instrumentation and measurement |
container_volume | 72 |
creator | Yue, Guanghui Li, Siying Cong, Runmin Zhou, Tianwei Lei, Baiying Wang, Tianfu |
description | Recently, deep convolutional neural networks (C-NNs) have provided us an effective tool for automated polyp segmentation in colonoscopy images. However, most CNN-based methods do not fully consider the feature interaction among different layers and often cannot provide satisfactory segmentation performance. In this paper, a novel attention-guided pyramid context network (APCNet) is proposed for accurate and robust polyp segmentation in colonoscopy images. Specifically, considering that different network layers represent the polyp in different aspects, APCNet first extracts multi-layer features in a pyramid structure, then utilizes an attention-guided multi-layer aggregation strategy to refine the context features of each layer by utilizing the complementary information of different layers. To obtain abundant context features, APCNet employs a context extraction module that explores the context information of each layer via local information retainment and global information compaction. Through the top-down deep supervision, our APCNet implements a coarse-to-fine polyp segmentation and finally localizes the polyp region precisely. Extensive experiments on two in-domain and four out-of-domain experiments show that APCNet is comparable to 19 state-of-the-art methods. Moreover, it holds a more appropriate trade-off between effectiveness and computational complexity than these competing methods. |
doi_str_mv | 10.1109/TIM.2023.3244219 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2784549706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10058111</ieee_id><sourcerecordid>2784549706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-389517d4e6872a38910fa3e64791cc1678e02008e4c238c5bc0130a0a1776f803</originalsourceid><addsrcrecordid>eNpNkM9LwzAUgIMoOKd3Dx4KnjvfS9L8OI6hczB14HYusU1H59rUJEP739sxD57Cg-97L3yE3CJMEEE_rBcvEwqUTRjlnKI-IyPMMplqIeg5GQGgSjXPxCW5CmEHAFJwOSKbaYy2jbVr0_mhLm2ZrHpvmrpMZq6N9icmrzZ-O_-ZVM4nK7fvu-TdbpvBMUcrqduB3LvWhcJ1fbJozNaGa3JRmX2wN3_vmGyeHtez53T5Nl_Mpsu0oJrGlCmdoSy5FUpSM0wIlWF2-JjGokAhlQUKoCwvKFNF9lEAMjBgUEpRKWBjcn_a23n3dbAh5jt38O1wMqdS8YxrCWKg4EQV3oXgbZV3vm6M73OE_BgvH-Llx3j5X7xBuTsptbX2Hw6ZQkT2C8SbaeY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784549706</pqid></control><display><type>article</type><title>Attention-Guided Pyramid Context Network for Polyp Segmentation in Colonoscopy Images</title><source>IEEE Electronic Library (IEL)</source><creator>Yue, Guanghui ; Li, Siying ; Cong, Runmin ; Zhou, Tianwei ; Lei, Baiying ; Wang, Tianfu</creator><creatorcontrib>Yue, Guanghui ; Li, Siying ; Cong, Runmin ; Zhou, Tianwei ; Lei, Baiying ; Wang, Tianfu</creatorcontrib><description>Recently, deep convolutional neural networks (C-NNs) have provided us an effective tool for automated polyp segmentation in colonoscopy images. However, most CNN-based methods do not fully consider the feature interaction among different layers and often cannot provide satisfactory segmentation performance. In this paper, a novel attention-guided pyramid context network (APCNet) is proposed for accurate and robust polyp segmentation in colonoscopy images. Specifically, considering that different network layers represent the polyp in different aspects, APCNet first extracts multi-layer features in a pyramid structure, then utilizes an attention-guided multi-layer aggregation strategy to refine the context features of each layer by utilizing the complementary information of different layers. To obtain abundant context features, APCNet employs a context extraction module that explores the context information of each layer via local information retainment and global information compaction. Through the top-down deep supervision, our APCNet implements a coarse-to-fine polyp segmentation and finally localizes the polyp region precisely. Extensive experiments on two in-domain and four out-of-domain experiments show that APCNet is comparable to 19 state-of-the-art methods. Moreover, it holds a more appropriate trade-off between effectiveness and computational complexity than these competing methods.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3244219</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; attention ; Colonoscopy ; colonoscopy image ; Context ; Data mining ; deep learning ; Domains ; Feature extraction ; Image segmentation ; Multilayers ; polyp segmentation ; Pyramid context network ; Semantics ; Task analysis ; Transformers</subject><ispartof>IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-389517d4e6872a38910fa3e64791cc1678e02008e4c238c5bc0130a0a1776f803</citedby><cites>FETCH-LOGICAL-c292t-389517d4e6872a38910fa3e64791cc1678e02008e4c238c5bc0130a0a1776f803</cites><orcidid>0000-0002-3087-2550 ; 0000-0003-3533-7204 ; 0000-0003-0972-4008 ; 0000-0002-9752-8738 ; 0000-0002-6761-8767 ; 0000-0002-1248-1214</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10058111$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10058111$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yue, Guanghui</creatorcontrib><creatorcontrib>Li, Siying</creatorcontrib><creatorcontrib>Cong, Runmin</creatorcontrib><creatorcontrib>Zhou, Tianwei</creatorcontrib><creatorcontrib>Lei, Baiying</creatorcontrib><creatorcontrib>Wang, Tianfu</creatorcontrib><title>Attention-Guided Pyramid Context Network for Polyp Segmentation in Colonoscopy Images</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Recently, deep convolutional neural networks (C-NNs) have provided us an effective tool for automated polyp segmentation in colonoscopy images. However, most CNN-based methods do not fully consider the feature interaction among different layers and often cannot provide satisfactory segmentation performance. In this paper, a novel attention-guided pyramid context network (APCNet) is proposed for accurate and robust polyp segmentation in colonoscopy images. Specifically, considering that different network layers represent the polyp in different aspects, APCNet first extracts multi-layer features in a pyramid structure, then utilizes an attention-guided multi-layer aggregation strategy to refine the context features of each layer by utilizing the complementary information of different layers. To obtain abundant context features, APCNet employs a context extraction module that explores the context information of each layer via local information retainment and global information compaction. Through the top-down deep supervision, our APCNet implements a coarse-to-fine polyp segmentation and finally localizes the polyp region precisely. Extensive experiments on two in-domain and four out-of-domain experiments show that APCNet is comparable to 19 state-of-the-art methods. Moreover, it holds a more appropriate trade-off between effectiveness and computational complexity than these competing methods.</description><subject>Artificial neural networks</subject><subject>attention</subject><subject>Colonoscopy</subject><subject>colonoscopy image</subject><subject>Context</subject><subject>Data mining</subject><subject>deep learning</subject><subject>Domains</subject><subject>Feature extraction</subject><subject>Image segmentation</subject><subject>Multilayers</subject><subject>polyp segmentation</subject><subject>Pyramid context network</subject><subject>Semantics</subject><subject>Task analysis</subject><subject>Transformers</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9LwzAUgIMoOKd3Dx4KnjvfS9L8OI6hczB14HYusU1H59rUJEP739sxD57Cg-97L3yE3CJMEEE_rBcvEwqUTRjlnKI-IyPMMplqIeg5GQGgSjXPxCW5CmEHAFJwOSKbaYy2jbVr0_mhLm2ZrHpvmrpMZq6N9icmrzZ-O_-ZVM4nK7fvu-TdbpvBMUcrqduB3LvWhcJ1fbJozNaGa3JRmX2wN3_vmGyeHtez53T5Nl_Mpsu0oJrGlCmdoSy5FUpSM0wIlWF2-JjGokAhlQUKoCwvKFNF9lEAMjBgUEpRKWBjcn_a23n3dbAh5jt38O1wMqdS8YxrCWKg4EQV3oXgbZV3vm6M73OE_BgvH-Llx3j5X7xBuTsptbX2Hw6ZQkT2C8SbaeY</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Yue, Guanghui</creator><creator>Li, Siying</creator><creator>Cong, Runmin</creator><creator>Zhou, Tianwei</creator><creator>Lei, Baiying</creator><creator>Wang, Tianfu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3087-2550</orcidid><orcidid>https://orcid.org/0000-0003-3533-7204</orcidid><orcidid>https://orcid.org/0000-0003-0972-4008</orcidid><orcidid>https://orcid.org/0000-0002-9752-8738</orcidid><orcidid>https://orcid.org/0000-0002-6761-8767</orcidid><orcidid>https://orcid.org/0000-0002-1248-1214</orcidid></search><sort><creationdate>20230101</creationdate><title>Attention-Guided Pyramid Context Network for Polyp Segmentation in Colonoscopy Images</title><author>Yue, Guanghui ; Li, Siying ; Cong, Runmin ; Zhou, Tianwei ; Lei, Baiying ; Wang, Tianfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-389517d4e6872a38910fa3e64791cc1678e02008e4c238c5bc0130a0a1776f803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>attention</topic><topic>Colonoscopy</topic><topic>colonoscopy image</topic><topic>Context</topic><topic>Data mining</topic><topic>deep learning</topic><topic>Domains</topic><topic>Feature extraction</topic><topic>Image segmentation</topic><topic>Multilayers</topic><topic>polyp segmentation</topic><topic>Pyramid context network</topic><topic>Semantics</topic><topic>Task analysis</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yue, Guanghui</creatorcontrib><creatorcontrib>Li, Siying</creatorcontrib><creatorcontrib>Cong, Runmin</creatorcontrib><creatorcontrib>Zhou, Tianwei</creatorcontrib><creatorcontrib>Lei, Baiying</creatorcontrib><creatorcontrib>Wang, Tianfu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yue, Guanghui</au><au>Li, Siying</au><au>Cong, Runmin</au><au>Zhou, Tianwei</au><au>Lei, Baiying</au><au>Wang, Tianfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Attention-Guided Pyramid Context Network for Polyp Segmentation in Colonoscopy Images</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>72</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Recently, deep convolutional neural networks (C-NNs) have provided us an effective tool for automated polyp segmentation in colonoscopy images. However, most CNN-based methods do not fully consider the feature interaction among different layers and often cannot provide satisfactory segmentation performance. In this paper, a novel attention-guided pyramid context network (APCNet) is proposed for accurate and robust polyp segmentation in colonoscopy images. Specifically, considering that different network layers represent the polyp in different aspects, APCNet first extracts multi-layer features in a pyramid structure, then utilizes an attention-guided multi-layer aggregation strategy to refine the context features of each layer by utilizing the complementary information of different layers. To obtain abundant context features, APCNet employs a context extraction module that explores the context information of each layer via local information retainment and global information compaction. Through the top-down deep supervision, our APCNet implements a coarse-to-fine polyp segmentation and finally localizes the polyp region precisely. Extensive experiments on two in-domain and four out-of-domain experiments show that APCNet is comparable to 19 state-of-the-art methods. Moreover, it holds a more appropriate trade-off between effectiveness and computational complexity than these competing methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3244219</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3087-2550</orcidid><orcidid>https://orcid.org/0000-0003-3533-7204</orcidid><orcidid>https://orcid.org/0000-0003-0972-4008</orcidid><orcidid>https://orcid.org/0000-0002-9752-8738</orcidid><orcidid>https://orcid.org/0000-0002-6761-8767</orcidid><orcidid>https://orcid.org/0000-0002-1248-1214</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9456 |
ispartof | IEEE transactions on instrumentation and measurement, 2023-01, Vol.72, p.1-1 |
issn | 0018-9456 1557-9662 |
language | eng |
recordid | cdi_proquest_journals_2784549706 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks attention Colonoscopy colonoscopy image Context Data mining deep learning Domains Feature extraction Image segmentation Multilayers polyp segmentation Pyramid context network Semantics Task analysis Transformers |
title | Attention-Guided Pyramid Context Network for Polyp Segmentation in Colonoscopy Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Attention-Guided%20Pyramid%20Context%20Network%20for%20Polyp%20Segmentation%20in%20Colonoscopy%20Images&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Yue,%20Guanghui&rft.date=2023-01-01&rft.volume=72&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3244219&rft_dat=%3Cproquest_RIE%3E2784549706%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784549706&rft_id=info:pmid/&rft_ieee_id=10058111&rfr_iscdi=true |