A Review of Integrated Systems and Components for 6G Wireless Communication in the D-Band
The evolution of wireless communication points to increasing demands on throughput for data-intensive applications in modern society. Integrated millimeter-wave systems with electrical beam-steering capabilities are promising candidates for wireless technologies of the future and are currently the s...
Gespeichert in:
Veröffentlicht in: | Proceedings of the IEEE 2023-03, Vol.111 (3), p.220-256 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 256 |
---|---|
container_issue | 3 |
container_start_page | 220 |
container_title | Proceedings of the IEEE |
container_volume | 111 |
creator | Maiwald, Tim Li, Teng Hotopan, George-Roberto Kolb, Katharina Disch, Karina Potschka, Julian Haag, Alexander Dietz, Marco Debaillie, Bjorn Zwick, Thomas Aufinger, Klaus Ferling, Dieter Weigel, Robert Visweswaran, Akshay |
description | The evolution of wireless communication points to increasing demands on throughput for data-intensive applications in modern society. Integrated millimeter-wave systems with electrical beam-steering capabilities are promising candidates for wireless technologies of the future and are currently the subject of widespread academic and commercial research. The D -band, ranging from 110-170 GHz, offers high aggregate bandwidths (BWs), low atmospheric absorption, and multi-GHz operation at amenable fractional BWs. It, therefore, has the potential to foster efficient, highly integrated wireless-communication systems with data rates approaching 100 Gb/s. This article reviews all aspects of hardware integration against the backdrop of an extensive literature review and outlines the challenges and possible solutions for practical 6G wireless systems in the D -band. To this end, this article covers a number of related topics in depth, which includes system definition, possible radio architectures and array configurations, the scope and potential of integrated circuit (IC) technologies, the design and characterization of key circuit blocks, advances in antenna and packaging technologies for high-frequency systems, and an overview of measurement techniques currently employed at D -band frequencies. A system-level study based on radio-link simulations of different single-carrier quadrature amplitude modulation (QAM) schemes is presented, which quantifies that the impact physical nonidealities, such as signal-to-noise ratio, phase noise, intermodulation distortion, and amplitude and phase imbalances in quadrature signal paths, have on bit-error rates in broadband D -band communication systems. This is followed by a comparative assessment of different arrayed-system configurations that include traditional phased arrays, the use of polarization diversity for the transmission of different or identical data streams, and multiple input multiple output (MIMO) operation. The article also presents an overview of possible transceiver architectures for implementing beam-steering arrays and an outline of the associated tradeoffs. The beam-squinting effect seen in large arrays is also investigated in |
doi_str_mv | 10.1109/JPROC.2023.3240127 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2784548552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10054484</ieee_id><sourcerecordid>2784548552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211t-f4e288e619710532c54754222fa63ebefc46631bad38b78874dba150b9c92d8a3</originalsourceid><addsrcrecordid>eNpNkMFOwzAQRC0EEqXwA4iDJc4p9tpOnGMJUIoqFRUQ4hQ5yQZSNXGxXVD_npRy4DSHnbcjPULOORtxztKrh8fFPBsBAzESIBmH5IAMuFI6AlDxIRkwxnWUAk-PyYn3S8aYULEYkLcxXeBXg9_U1nTaBXx3JmBFn7Y-YOup6Sqa2XZtO-yCp7V1NJ7Q18bhCr3fndpN15QmNLajTUfDB9Kb6LrHTslRbVYez_5ySF7ubp-z-2g2n0yz8SwqgfMQ1RJBa4x5mnCmBJRKJkoCQG1igQXWpYxjwQtTCV0kWieyKgxXrEjLFCptxJBc7v-unf3coA_50m5c10_mkGippFYK-hbsW6Wz3jus87VrWuO2OWf5TmH-qzDfKcz_FPbQxR5qEPEfwJSUWoofOtFr0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784548552</pqid></control><display><type>article</type><title>A Review of Integrated Systems and Components for 6G Wireless Communication in the D-Band</title><source>IEEE Electronic Library (IEL)</source><creator>Maiwald, Tim ; Li, Teng ; Hotopan, George-Roberto ; Kolb, Katharina ; Disch, Karina ; Potschka, Julian ; Haag, Alexander ; Dietz, Marco ; Debaillie, Bjorn ; Zwick, Thomas ; Aufinger, Klaus ; Ferling, Dieter ; Weigel, Robert ; Visweswaran, Akshay</creator><creatorcontrib>Maiwald, Tim ; Li, Teng ; Hotopan, George-Roberto ; Kolb, Katharina ; Disch, Karina ; Potschka, Julian ; Haag, Alexander ; Dietz, Marco ; Debaillie, Bjorn ; Zwick, Thomas ; Aufinger, Klaus ; Ferling, Dieter ; Weigel, Robert ; Visweswaran, Akshay</creatorcontrib><description><![CDATA[The evolution of wireless communication points to increasing demands on throughput for data-intensive applications in modern society. Integrated millimeter-wave systems with electrical beam-steering capabilities are promising candidates for wireless technologies of the future and are currently the subject of widespread academic and commercial research. The <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band, ranging from 110-170 GHz, offers high aggregate bandwidths (BWs), low atmospheric absorption, and multi-GHz operation at amenable fractional BWs. It, therefore, has the potential to foster efficient, highly integrated wireless-communication systems with data rates approaching 100 Gb/s. This article reviews all aspects of hardware integration against the backdrop of an extensive literature review and outlines the challenges and possible solutions for practical 6G wireless systems in the <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band. To this end, this article covers a number of related topics in depth, which includes system definition, possible radio architectures and array configurations, the scope and potential of integrated circuit (IC) technologies, the design and characterization of key circuit blocks, advances in antenna and packaging technologies for high-frequency systems, and an overview of measurement techniques currently employed at <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band frequencies. A system-level study based on radio-link simulations of different single-carrier quadrature amplitude modulation (QAM) schemes is presented, which quantifies that the impact physical nonidealities, such as signal-to-noise ratio, phase noise, intermodulation distortion, and amplitude and phase imbalances in quadrature signal paths, have on bit-error rates in broadband <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band communication systems. This is followed by a comparative assessment of different arrayed-system configurations that include traditional phased arrays, the use of polarization diversity for the transmission of different or identical data streams, and multiple input multiple output (MIMO) operation. The article also presents an overview of possible transceiver architectures for implementing beam-steering arrays and an outline of the associated tradeoffs. The beam-squinting effect seen in large arrays is also investigated in detail. On the implementation front, we present a comparison between different integrated-circuit technologies for high-frequency applications. These include CMOS and SiGe bipolar complementary metal oxide semiconductor (BiCMOS) heterojunction bipolar transistors (HBTs) in silicon technologies, and MOSFETs, HBTs, and HEMTs in III-V technologies, such as InP and GaAs. Implementation challenges are then addressed, and these include the design of high-frequency circuits in the latest IC technologies, current advances in antenna and packaging technologies, and emerging solutions for hybrid integration. The article also details the design and characterization of critical <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band transceiver circuit blocks, namely, power and low-noise amplifiers, mixers, phase shifters, passive components for quadrature-phase generation, and radiators exploring hybrid antennas, which we have developed over the course of the past five years. These results compliment the literature survey with comparisons with state-of-the-art designs and are applied to radio-link simulations to predict the performance of practicable wireless links.]]></description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2023.3240127</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>6G mobile communication ; Antennas ; Arrays ; Beam steering ; beyond 5G ; Bit error rate ; Broadband ; Broadband antennas ; characterization ; Circuit design ; Circuit synthesis ; CMOS ; communication ; Configurations ; D-band ; Data transmission ; Heterojunction bipolar transistors ; high-speed ; Integrated circuits ; Intermodulation distortion ; Literature reviews ; Measurement techniques ; Millimeter waves ; Mixers ; Packaging ; Passive components ; Phase noise ; Phase shifters ; Phased arrays ; prototyping ; Quadrature amplitude modulation ; Radiators ; Radio ; Semiconductor devices ; semiconductor technologies ; Signal paths ; Signal to noise ratio ; Throughput ; transceiver architectures ; Transceivers ; Wireless communication ; Wireless communications ; Wireless sensor networks</subject><ispartof>Proceedings of the IEEE, 2023-03, Vol.111 (3), p.220-256</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c211t-f4e288e619710532c54754222fa63ebefc46631bad38b78874dba150b9c92d8a3</citedby><cites>FETCH-LOGICAL-c211t-f4e288e619710532c54754222fa63ebefc46631bad38b78874dba150b9c92d8a3</cites><orcidid>0000-0002-4003-7575 ; 0000-0002-7975-6171 ; 0000-0002-1268-0766 ; 0000-0002-7884-7987 ; 0000-0002-5036-8490 ; 0000-0001-5252-8235 ; 0000-0002-3131-1800 ; 0000-0003-0198-9423 ; 0000-0002-1984-919X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10054484$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10054484$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Maiwald, Tim</creatorcontrib><creatorcontrib>Li, Teng</creatorcontrib><creatorcontrib>Hotopan, George-Roberto</creatorcontrib><creatorcontrib>Kolb, Katharina</creatorcontrib><creatorcontrib>Disch, Karina</creatorcontrib><creatorcontrib>Potschka, Julian</creatorcontrib><creatorcontrib>Haag, Alexander</creatorcontrib><creatorcontrib>Dietz, Marco</creatorcontrib><creatorcontrib>Debaillie, Bjorn</creatorcontrib><creatorcontrib>Zwick, Thomas</creatorcontrib><creatorcontrib>Aufinger, Klaus</creatorcontrib><creatorcontrib>Ferling, Dieter</creatorcontrib><creatorcontrib>Weigel, Robert</creatorcontrib><creatorcontrib>Visweswaran, Akshay</creatorcontrib><title>A Review of Integrated Systems and Components for 6G Wireless Communication in the D-Band</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description><![CDATA[The evolution of wireless communication points to increasing demands on throughput for data-intensive applications in modern society. Integrated millimeter-wave systems with electrical beam-steering capabilities are promising candidates for wireless technologies of the future and are currently the subject of widespread academic and commercial research. The <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band, ranging from 110-170 GHz, offers high aggregate bandwidths (BWs), low atmospheric absorption, and multi-GHz operation at amenable fractional BWs. It, therefore, has the potential to foster efficient, highly integrated wireless-communication systems with data rates approaching 100 Gb/s. This article reviews all aspects of hardware integration against the backdrop of an extensive literature review and outlines the challenges and possible solutions for practical 6G wireless systems in the <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band. To this end, this article covers a number of related topics in depth, which includes system definition, possible radio architectures and array configurations, the scope and potential of integrated circuit (IC) technologies, the design and characterization of key circuit blocks, advances in antenna and packaging technologies for high-frequency systems, and an overview of measurement techniques currently employed at <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band frequencies. A system-level study based on radio-link simulations of different single-carrier quadrature amplitude modulation (QAM) schemes is presented, which quantifies that the impact physical nonidealities, such as signal-to-noise ratio, phase noise, intermodulation distortion, and amplitude and phase imbalances in quadrature signal paths, have on bit-error rates in broadband <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band communication systems. This is followed by a comparative assessment of different arrayed-system configurations that include traditional phased arrays, the use of polarization diversity for the transmission of different or identical data streams, and multiple input multiple output (MIMO) operation. The article also presents an overview of possible transceiver architectures for implementing beam-steering arrays and an outline of the associated tradeoffs. The beam-squinting effect seen in large arrays is also investigated in detail. On the implementation front, we present a comparison between different integrated-circuit technologies for high-frequency applications. These include CMOS and SiGe bipolar complementary metal oxide semiconductor (BiCMOS) heterojunction bipolar transistors (HBTs) in silicon technologies, and MOSFETs, HBTs, and HEMTs in III-V technologies, such as InP and GaAs. Implementation challenges are then addressed, and these include the design of high-frequency circuits in the latest IC technologies, current advances in antenna and packaging technologies, and emerging solutions for hybrid integration. The article also details the design and characterization of critical <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band transceiver circuit blocks, namely, power and low-noise amplifiers, mixers, phase shifters, passive components for quadrature-phase generation, and radiators exploring hybrid antennas, which we have developed over the course of the past five years. These results compliment the literature survey with comparisons with state-of-the-art designs and are applied to radio-link simulations to predict the performance of practicable wireless links.]]></description><subject>6G mobile communication</subject><subject>Antennas</subject><subject>Arrays</subject><subject>Beam steering</subject><subject>beyond 5G</subject><subject>Bit error rate</subject><subject>Broadband</subject><subject>Broadband antennas</subject><subject>characterization</subject><subject>Circuit design</subject><subject>Circuit synthesis</subject><subject>CMOS</subject><subject>communication</subject><subject>Configurations</subject><subject>D-band</subject><subject>Data transmission</subject><subject>Heterojunction bipolar transistors</subject><subject>high-speed</subject><subject>Integrated circuits</subject><subject>Intermodulation distortion</subject><subject>Literature reviews</subject><subject>Measurement techniques</subject><subject>Millimeter waves</subject><subject>Mixers</subject><subject>Packaging</subject><subject>Passive components</subject><subject>Phase noise</subject><subject>Phase shifters</subject><subject>Phased arrays</subject><subject>prototyping</subject><subject>Quadrature amplitude modulation</subject><subject>Radiators</subject><subject>Radio</subject><subject>Semiconductor devices</subject><subject>semiconductor technologies</subject><subject>Signal paths</subject><subject>Signal to noise ratio</subject><subject>Throughput</subject><subject>transceiver architectures</subject><subject>Transceivers</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><subject>Wireless sensor networks</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOwzAQRC0EEqXwA4iDJc4p9tpOnGMJUIoqFRUQ4hQ5yQZSNXGxXVD_npRy4DSHnbcjPULOORtxztKrh8fFPBsBAzESIBmH5IAMuFI6AlDxIRkwxnWUAk-PyYn3S8aYULEYkLcxXeBXg9_U1nTaBXx3JmBFn7Y-YOup6Sqa2XZtO-yCp7V1NJ7Q18bhCr3fndpN15QmNLajTUfDB9Kb6LrHTslRbVYez_5ySF7ubp-z-2g2n0yz8SwqgfMQ1RJBa4x5mnCmBJRKJkoCQG1igQXWpYxjwQtTCV0kWieyKgxXrEjLFCptxJBc7v-unf3coA_50m5c10_mkGippFYK-hbsW6Wz3jus87VrWuO2OWf5TmH-qzDfKcz_FPbQxR5qEPEfwJSUWoofOtFr0g</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Maiwald, Tim</creator><creator>Li, Teng</creator><creator>Hotopan, George-Roberto</creator><creator>Kolb, Katharina</creator><creator>Disch, Karina</creator><creator>Potschka, Julian</creator><creator>Haag, Alexander</creator><creator>Dietz, Marco</creator><creator>Debaillie, Bjorn</creator><creator>Zwick, Thomas</creator><creator>Aufinger, Klaus</creator><creator>Ferling, Dieter</creator><creator>Weigel, Robert</creator><creator>Visweswaran, Akshay</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4003-7575</orcidid><orcidid>https://orcid.org/0000-0002-7975-6171</orcidid><orcidid>https://orcid.org/0000-0002-1268-0766</orcidid><orcidid>https://orcid.org/0000-0002-7884-7987</orcidid><orcidid>https://orcid.org/0000-0002-5036-8490</orcidid><orcidid>https://orcid.org/0000-0001-5252-8235</orcidid><orcidid>https://orcid.org/0000-0002-3131-1800</orcidid><orcidid>https://orcid.org/0000-0003-0198-9423</orcidid><orcidid>https://orcid.org/0000-0002-1984-919X</orcidid></search><sort><creationdate>20230301</creationdate><title>A Review of Integrated Systems and Components for 6G Wireless Communication in the D-Band</title><author>Maiwald, Tim ; Li, Teng ; Hotopan, George-Roberto ; Kolb, Katharina ; Disch, Karina ; Potschka, Julian ; Haag, Alexander ; Dietz, Marco ; Debaillie, Bjorn ; Zwick, Thomas ; Aufinger, Klaus ; Ferling, Dieter ; Weigel, Robert ; Visweswaran, Akshay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211t-f4e288e619710532c54754222fa63ebefc46631bad38b78874dba150b9c92d8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>6G mobile communication</topic><topic>Antennas</topic><topic>Arrays</topic><topic>Beam steering</topic><topic>beyond 5G</topic><topic>Bit error rate</topic><topic>Broadband</topic><topic>Broadband antennas</topic><topic>characterization</topic><topic>Circuit design</topic><topic>Circuit synthesis</topic><topic>CMOS</topic><topic>communication</topic><topic>Configurations</topic><topic>D-band</topic><topic>Data transmission</topic><topic>Heterojunction bipolar transistors</topic><topic>high-speed</topic><topic>Integrated circuits</topic><topic>Intermodulation distortion</topic><topic>Literature reviews</topic><topic>Measurement techniques</topic><topic>Millimeter waves</topic><topic>Mixers</topic><topic>Packaging</topic><topic>Passive components</topic><topic>Phase noise</topic><topic>Phase shifters</topic><topic>Phased arrays</topic><topic>prototyping</topic><topic>Quadrature amplitude modulation</topic><topic>Radiators</topic><topic>Radio</topic><topic>Semiconductor devices</topic><topic>semiconductor technologies</topic><topic>Signal paths</topic><topic>Signal to noise ratio</topic><topic>Throughput</topic><topic>transceiver architectures</topic><topic>Transceivers</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maiwald, Tim</creatorcontrib><creatorcontrib>Li, Teng</creatorcontrib><creatorcontrib>Hotopan, George-Roberto</creatorcontrib><creatorcontrib>Kolb, Katharina</creatorcontrib><creatorcontrib>Disch, Karina</creatorcontrib><creatorcontrib>Potschka, Julian</creatorcontrib><creatorcontrib>Haag, Alexander</creatorcontrib><creatorcontrib>Dietz, Marco</creatorcontrib><creatorcontrib>Debaillie, Bjorn</creatorcontrib><creatorcontrib>Zwick, Thomas</creatorcontrib><creatorcontrib>Aufinger, Klaus</creatorcontrib><creatorcontrib>Ferling, Dieter</creatorcontrib><creatorcontrib>Weigel, Robert</creatorcontrib><creatorcontrib>Visweswaran, Akshay</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maiwald, Tim</au><au>Li, Teng</au><au>Hotopan, George-Roberto</au><au>Kolb, Katharina</au><au>Disch, Karina</au><au>Potschka, Julian</au><au>Haag, Alexander</au><au>Dietz, Marco</au><au>Debaillie, Bjorn</au><au>Zwick, Thomas</au><au>Aufinger, Klaus</au><au>Ferling, Dieter</au><au>Weigel, Robert</au><au>Visweswaran, Akshay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Integrated Systems and Components for 6G Wireless Communication in the D-Band</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>111</volume><issue>3</issue><spage>220</spage><epage>256</epage><pages>220-256</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract><![CDATA[The evolution of wireless communication points to increasing demands on throughput for data-intensive applications in modern society. Integrated millimeter-wave systems with electrical beam-steering capabilities are promising candidates for wireless technologies of the future and are currently the subject of widespread academic and commercial research. The <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band, ranging from 110-170 GHz, offers high aggregate bandwidths (BWs), low atmospheric absorption, and multi-GHz operation at amenable fractional BWs. It, therefore, has the potential to foster efficient, highly integrated wireless-communication systems with data rates approaching 100 Gb/s. This article reviews all aspects of hardware integration against the backdrop of an extensive literature review and outlines the challenges and possible solutions for practical 6G wireless systems in the <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band. To this end, this article covers a number of related topics in depth, which includes system definition, possible radio architectures and array configurations, the scope and potential of integrated circuit (IC) technologies, the design and characterization of key circuit blocks, advances in antenna and packaging technologies for high-frequency systems, and an overview of measurement techniques currently employed at <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band frequencies. A system-level study based on radio-link simulations of different single-carrier quadrature amplitude modulation (QAM) schemes is presented, which quantifies that the impact physical nonidealities, such as signal-to-noise ratio, phase noise, intermodulation distortion, and amplitude and phase imbalances in quadrature signal paths, have on bit-error rates in broadband <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band communication systems. This is followed by a comparative assessment of different arrayed-system configurations that include traditional phased arrays, the use of polarization diversity for the transmission of different or identical data streams, and multiple input multiple output (MIMO) operation. The article also presents an overview of possible transceiver architectures for implementing beam-steering arrays and an outline of the associated tradeoffs. The beam-squinting effect seen in large arrays is also investigated in detail. On the implementation front, we present a comparison between different integrated-circuit technologies for high-frequency applications. These include CMOS and SiGe bipolar complementary metal oxide semiconductor (BiCMOS) heterojunction bipolar transistors (HBTs) in silicon technologies, and MOSFETs, HBTs, and HEMTs in III-V technologies, such as InP and GaAs. Implementation challenges are then addressed, and these include the design of high-frequency circuits in the latest IC technologies, current advances in antenna and packaging technologies, and emerging solutions for hybrid integration. The article also details the design and characterization of critical <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band transceiver circuit blocks, namely, power and low-noise amplifiers, mixers, phase shifters, passive components for quadrature-phase generation, and radiators exploring hybrid antennas, which we have developed over the course of the past five years. These results compliment the literature survey with comparisons with state-of-the-art designs and are applied to radio-link simulations to predict the performance of practicable wireless links.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2023.3240127</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-4003-7575</orcidid><orcidid>https://orcid.org/0000-0002-7975-6171</orcidid><orcidid>https://orcid.org/0000-0002-1268-0766</orcidid><orcidid>https://orcid.org/0000-0002-7884-7987</orcidid><orcidid>https://orcid.org/0000-0002-5036-8490</orcidid><orcidid>https://orcid.org/0000-0001-5252-8235</orcidid><orcidid>https://orcid.org/0000-0002-3131-1800</orcidid><orcidid>https://orcid.org/0000-0003-0198-9423</orcidid><orcidid>https://orcid.org/0000-0002-1984-919X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9219 |
ispartof | Proceedings of the IEEE, 2023-03, Vol.111 (3), p.220-256 |
issn | 0018-9219 1558-2256 |
language | eng |
recordid | cdi_proquest_journals_2784548552 |
source | IEEE Electronic Library (IEL) |
subjects | 6G mobile communication Antennas Arrays Beam steering beyond 5G Bit error rate Broadband Broadband antennas characterization Circuit design Circuit synthesis CMOS communication Configurations D-band Data transmission Heterojunction bipolar transistors high-speed Integrated circuits Intermodulation distortion Literature reviews Measurement techniques Millimeter waves Mixers Packaging Passive components Phase noise Phase shifters Phased arrays prototyping Quadrature amplitude modulation Radiators Radio Semiconductor devices semiconductor technologies Signal paths Signal to noise ratio Throughput transceiver architectures Transceivers Wireless communication Wireless communications Wireless sensor networks |
title | A Review of Integrated Systems and Components for 6G Wireless Communication in the D-Band |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T04%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Integrated%20Systems%20and%20Components%20for%206G%20Wireless%20Communication%20in%20the%20D-Band&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Maiwald,%20Tim&rft.date=2023-03-01&rft.volume=111&rft.issue=3&rft.spage=220&rft.epage=256&rft.pages=220-256&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2023.3240127&rft_dat=%3Cproquest_RIE%3E2784548552%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784548552&rft_id=info:pmid/&rft_ieee_id=10054484&rfr_iscdi=true |