A Review of Integrated Systems and Components for 6G Wireless Communication in the D-Band

The evolution of wireless communication points to increasing demands on throughput for data-intensive applications in modern society. Integrated millimeter-wave systems with electrical beam-steering capabilities are promising candidates for wireless technologies of the future and are currently the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 2023-03, Vol.111 (3), p.220-256
Hauptverfasser: Maiwald, Tim, Li, Teng, Hotopan, George-Roberto, Kolb, Katharina, Disch, Karina, Potschka, Julian, Haag, Alexander, Dietz, Marco, Debaillie, Bjorn, Zwick, Thomas, Aufinger, Klaus, Ferling, Dieter, Weigel, Robert, Visweswaran, Akshay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 256
container_issue 3
container_start_page 220
container_title Proceedings of the IEEE
container_volume 111
creator Maiwald, Tim
Li, Teng
Hotopan, George-Roberto
Kolb, Katharina
Disch, Karina
Potschka, Julian
Haag, Alexander
Dietz, Marco
Debaillie, Bjorn
Zwick, Thomas
Aufinger, Klaus
Ferling, Dieter
Weigel, Robert
Visweswaran, Akshay
description The evolution of wireless communication points to increasing demands on throughput for data-intensive applications in modern society. Integrated millimeter-wave systems with electrical beam-steering capabilities are promising candidates for wireless technologies of the future and are currently the subject of widespread academic and commercial research. The D -band, ranging from 110-170 GHz, offers high aggregate bandwidths (BWs), low atmospheric absorption, and multi-GHz operation at amenable fractional BWs. It, therefore, has the potential to foster efficient, highly integrated wireless-communication systems with data rates approaching 100 Gb/s. This article reviews all aspects of hardware integration against the backdrop of an extensive literature review and outlines the challenges and possible solutions for practical 6G wireless systems in the D -band. To this end, this article covers a number of related topics in depth, which includes system definition, possible radio architectures and array configurations, the scope and potential of integrated circuit (IC) technologies, the design and characterization of key circuit blocks, advances in antenna and packaging technologies for high-frequency systems, and an overview of measurement techniques currently employed at D -band frequencies. A system-level study based on radio-link simulations of different single-carrier quadrature amplitude modulation (QAM) schemes is presented, which quantifies that the impact physical nonidealities, such as signal-to-noise ratio, phase noise, intermodulation distortion, and amplitude and phase imbalances in quadrature signal paths, have on bit-error rates in broadband D -band communication systems. This is followed by a comparative assessment of different arrayed-system configurations that include traditional phased arrays, the use of polarization diversity for the transmission of different or identical data streams, and multiple input multiple output (MIMO) operation. The article also presents an overview of possible transceiver architectures for implementing beam-steering arrays and an outline of the associated tradeoffs. The beam-squinting effect seen in large arrays is also investigated in
doi_str_mv 10.1109/JPROC.2023.3240127
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2784548552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10054484</ieee_id><sourcerecordid>2784548552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c211t-f4e288e619710532c54754222fa63ebefc46631bad38b78874dba150b9c92d8a3</originalsourceid><addsrcrecordid>eNpNkMFOwzAQRC0EEqXwA4iDJc4p9tpOnGMJUIoqFRUQ4hQ5yQZSNXGxXVD_npRy4DSHnbcjPULOORtxztKrh8fFPBsBAzESIBmH5IAMuFI6AlDxIRkwxnWUAk-PyYn3S8aYULEYkLcxXeBXg9_U1nTaBXx3JmBFn7Y-YOup6Sqa2XZtO-yCp7V1NJ7Q18bhCr3fndpN15QmNLajTUfDB9Kb6LrHTslRbVYez_5ySF7ubp-z-2g2n0yz8SwqgfMQ1RJBa4x5mnCmBJRKJkoCQG1igQXWpYxjwQtTCV0kWieyKgxXrEjLFCptxJBc7v-unf3coA_50m5c10_mkGippFYK-hbsW6Wz3jus87VrWuO2OWf5TmH-qzDfKcz_FPbQxR5qEPEfwJSUWoofOtFr0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784548552</pqid></control><display><type>article</type><title>A Review of Integrated Systems and Components for 6G Wireless Communication in the D-Band</title><source>IEEE Electronic Library (IEL)</source><creator>Maiwald, Tim ; Li, Teng ; Hotopan, George-Roberto ; Kolb, Katharina ; Disch, Karina ; Potschka, Julian ; Haag, Alexander ; Dietz, Marco ; Debaillie, Bjorn ; Zwick, Thomas ; Aufinger, Klaus ; Ferling, Dieter ; Weigel, Robert ; Visweswaran, Akshay</creator><creatorcontrib>Maiwald, Tim ; Li, Teng ; Hotopan, George-Roberto ; Kolb, Katharina ; Disch, Karina ; Potschka, Julian ; Haag, Alexander ; Dietz, Marco ; Debaillie, Bjorn ; Zwick, Thomas ; Aufinger, Klaus ; Ferling, Dieter ; Weigel, Robert ; Visweswaran, Akshay</creatorcontrib><description><![CDATA[The evolution of wireless communication points to increasing demands on throughput for data-intensive applications in modern society. Integrated millimeter-wave systems with electrical beam-steering capabilities are promising candidates for wireless technologies of the future and are currently the subject of widespread academic and commercial research. The <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band, ranging from 110-170 GHz, offers high aggregate bandwidths (BWs), low atmospheric absorption, and multi-GHz operation at amenable fractional BWs. It, therefore, has the potential to foster efficient, highly integrated wireless-communication systems with data rates approaching 100 Gb/s. This article reviews all aspects of hardware integration against the backdrop of an extensive literature review and outlines the challenges and possible solutions for practical 6G wireless systems in the <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band. To this end, this article covers a number of related topics in depth, which includes system definition, possible radio architectures and array configurations, the scope and potential of integrated circuit (IC) technologies, the design and characterization of key circuit blocks, advances in antenna and packaging technologies for high-frequency systems, and an overview of measurement techniques currently employed at <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band frequencies. A system-level study based on radio-link simulations of different single-carrier quadrature amplitude modulation (QAM) schemes is presented, which quantifies that the impact physical nonidealities, such as signal-to-noise ratio, phase noise, intermodulation distortion, and amplitude and phase imbalances in quadrature signal paths, have on bit-error rates in broadband <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band communication systems. This is followed by a comparative assessment of different arrayed-system configurations that include traditional phased arrays, the use of polarization diversity for the transmission of different or identical data streams, and multiple input multiple output (MIMO) operation. The article also presents an overview of possible transceiver architectures for implementing beam-steering arrays and an outline of the associated tradeoffs. The beam-squinting effect seen in large arrays is also investigated in detail. On the implementation front, we present a comparison between different integrated-circuit technologies for high-frequency applications. These include CMOS and SiGe bipolar complementary metal oxide semiconductor (BiCMOS) heterojunction bipolar transistors (HBTs) in silicon technologies, and MOSFETs, HBTs, and HEMTs in III-V technologies, such as InP and GaAs. Implementation challenges are then addressed, and these include the design of high-frequency circuits in the latest IC technologies, current advances in antenna and packaging technologies, and emerging solutions for hybrid integration. The article also details the design and characterization of critical <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band transceiver circuit blocks, namely, power and low-noise amplifiers, mixers, phase shifters, passive components for quadrature-phase generation, and radiators exploring hybrid antennas, which we have developed over the course of the past five years. These results compliment the literature survey with comparisons with state-of-the-art designs and are applied to radio-link simulations to predict the performance of practicable wireless links.]]></description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2023.3240127</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>6G mobile communication ; Antennas ; Arrays ; Beam steering ; beyond 5G ; Bit error rate ; Broadband ; Broadband antennas ; characterization ; Circuit design ; Circuit synthesis ; CMOS ; communication ; Configurations ; D-band ; Data transmission ; Heterojunction bipolar transistors ; high-speed ; Integrated circuits ; Intermodulation distortion ; Literature reviews ; Measurement techniques ; Millimeter waves ; Mixers ; Packaging ; Passive components ; Phase noise ; Phase shifters ; Phased arrays ; prototyping ; Quadrature amplitude modulation ; Radiators ; Radio ; Semiconductor devices ; semiconductor technologies ; Signal paths ; Signal to noise ratio ; Throughput ; transceiver architectures ; Transceivers ; Wireless communication ; Wireless communications ; Wireless sensor networks</subject><ispartof>Proceedings of the IEEE, 2023-03, Vol.111 (3), p.220-256</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c211t-f4e288e619710532c54754222fa63ebefc46631bad38b78874dba150b9c92d8a3</citedby><cites>FETCH-LOGICAL-c211t-f4e288e619710532c54754222fa63ebefc46631bad38b78874dba150b9c92d8a3</cites><orcidid>0000-0002-4003-7575 ; 0000-0002-7975-6171 ; 0000-0002-1268-0766 ; 0000-0002-7884-7987 ; 0000-0002-5036-8490 ; 0000-0001-5252-8235 ; 0000-0002-3131-1800 ; 0000-0003-0198-9423 ; 0000-0002-1984-919X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10054484$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10054484$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Maiwald, Tim</creatorcontrib><creatorcontrib>Li, Teng</creatorcontrib><creatorcontrib>Hotopan, George-Roberto</creatorcontrib><creatorcontrib>Kolb, Katharina</creatorcontrib><creatorcontrib>Disch, Karina</creatorcontrib><creatorcontrib>Potschka, Julian</creatorcontrib><creatorcontrib>Haag, Alexander</creatorcontrib><creatorcontrib>Dietz, Marco</creatorcontrib><creatorcontrib>Debaillie, Bjorn</creatorcontrib><creatorcontrib>Zwick, Thomas</creatorcontrib><creatorcontrib>Aufinger, Klaus</creatorcontrib><creatorcontrib>Ferling, Dieter</creatorcontrib><creatorcontrib>Weigel, Robert</creatorcontrib><creatorcontrib>Visweswaran, Akshay</creatorcontrib><title>A Review of Integrated Systems and Components for 6G Wireless Communication in the D-Band</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description><![CDATA[The evolution of wireless communication points to increasing demands on throughput for data-intensive applications in modern society. Integrated millimeter-wave systems with electrical beam-steering capabilities are promising candidates for wireless technologies of the future and are currently the subject of widespread academic and commercial research. The <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band, ranging from 110-170 GHz, offers high aggregate bandwidths (BWs), low atmospheric absorption, and multi-GHz operation at amenable fractional BWs. It, therefore, has the potential to foster efficient, highly integrated wireless-communication systems with data rates approaching 100 Gb/s. This article reviews all aspects of hardware integration against the backdrop of an extensive literature review and outlines the challenges and possible solutions for practical 6G wireless systems in the <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band. To this end, this article covers a number of related topics in depth, which includes system definition, possible radio architectures and array configurations, the scope and potential of integrated circuit (IC) technologies, the design and characterization of key circuit blocks, advances in antenna and packaging technologies for high-frequency systems, and an overview of measurement techniques currently employed at <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band frequencies. A system-level study based on radio-link simulations of different single-carrier quadrature amplitude modulation (QAM) schemes is presented, which quantifies that the impact physical nonidealities, such as signal-to-noise ratio, phase noise, intermodulation distortion, and amplitude and phase imbalances in quadrature signal paths, have on bit-error rates in broadband <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band communication systems. This is followed by a comparative assessment of different arrayed-system configurations that include traditional phased arrays, the use of polarization diversity for the transmission of different or identical data streams, and multiple input multiple output (MIMO) operation. The article also presents an overview of possible transceiver architectures for implementing beam-steering arrays and an outline of the associated tradeoffs. The beam-squinting effect seen in large arrays is also investigated in detail. On the implementation front, we present a comparison between different integrated-circuit technologies for high-frequency applications. These include CMOS and SiGe bipolar complementary metal oxide semiconductor (BiCMOS) heterojunction bipolar transistors (HBTs) in silicon technologies, and MOSFETs, HBTs, and HEMTs in III-V technologies, such as InP and GaAs. Implementation challenges are then addressed, and these include the design of high-frequency circuits in the latest IC technologies, current advances in antenna and packaging technologies, and emerging solutions for hybrid integration. The article also details the design and characterization of critical <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band transceiver circuit blocks, namely, power and low-noise amplifiers, mixers, phase shifters, passive components for quadrature-phase generation, and radiators exploring hybrid antennas, which we have developed over the course of the past five years. These results compliment the literature survey with comparisons with state-of-the-art designs and are applied to radio-link simulations to predict the performance of practicable wireless links.]]></description><subject>6G mobile communication</subject><subject>Antennas</subject><subject>Arrays</subject><subject>Beam steering</subject><subject>beyond 5G</subject><subject>Bit error rate</subject><subject>Broadband</subject><subject>Broadband antennas</subject><subject>characterization</subject><subject>Circuit design</subject><subject>Circuit synthesis</subject><subject>CMOS</subject><subject>communication</subject><subject>Configurations</subject><subject>D-band</subject><subject>Data transmission</subject><subject>Heterojunction bipolar transistors</subject><subject>high-speed</subject><subject>Integrated circuits</subject><subject>Intermodulation distortion</subject><subject>Literature reviews</subject><subject>Measurement techniques</subject><subject>Millimeter waves</subject><subject>Mixers</subject><subject>Packaging</subject><subject>Passive components</subject><subject>Phase noise</subject><subject>Phase shifters</subject><subject>Phased arrays</subject><subject>prototyping</subject><subject>Quadrature amplitude modulation</subject><subject>Radiators</subject><subject>Radio</subject><subject>Semiconductor devices</subject><subject>semiconductor technologies</subject><subject>Signal paths</subject><subject>Signal to noise ratio</subject><subject>Throughput</subject><subject>transceiver architectures</subject><subject>Transceivers</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><subject>Wireless sensor networks</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFOwzAQRC0EEqXwA4iDJc4p9tpOnGMJUIoqFRUQ4hQ5yQZSNXGxXVD_npRy4DSHnbcjPULOORtxztKrh8fFPBsBAzESIBmH5IAMuFI6AlDxIRkwxnWUAk-PyYn3S8aYULEYkLcxXeBXg9_U1nTaBXx3JmBFn7Y-YOup6Sqa2XZtO-yCp7V1NJ7Q18bhCr3fndpN15QmNLajTUfDB9Kb6LrHTslRbVYez_5ySF7ubp-z-2g2n0yz8SwqgfMQ1RJBa4x5mnCmBJRKJkoCQG1igQXWpYxjwQtTCV0kWieyKgxXrEjLFCptxJBc7v-unf3coA_50m5c10_mkGippFYK-hbsW6Wz3jus87VrWuO2OWf5TmH-qzDfKcz_FPbQxR5qEPEfwJSUWoofOtFr0g</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Maiwald, Tim</creator><creator>Li, Teng</creator><creator>Hotopan, George-Roberto</creator><creator>Kolb, Katharina</creator><creator>Disch, Karina</creator><creator>Potschka, Julian</creator><creator>Haag, Alexander</creator><creator>Dietz, Marco</creator><creator>Debaillie, Bjorn</creator><creator>Zwick, Thomas</creator><creator>Aufinger, Klaus</creator><creator>Ferling, Dieter</creator><creator>Weigel, Robert</creator><creator>Visweswaran, Akshay</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4003-7575</orcidid><orcidid>https://orcid.org/0000-0002-7975-6171</orcidid><orcidid>https://orcid.org/0000-0002-1268-0766</orcidid><orcidid>https://orcid.org/0000-0002-7884-7987</orcidid><orcidid>https://orcid.org/0000-0002-5036-8490</orcidid><orcidid>https://orcid.org/0000-0001-5252-8235</orcidid><orcidid>https://orcid.org/0000-0002-3131-1800</orcidid><orcidid>https://orcid.org/0000-0003-0198-9423</orcidid><orcidid>https://orcid.org/0000-0002-1984-919X</orcidid></search><sort><creationdate>20230301</creationdate><title>A Review of Integrated Systems and Components for 6G Wireless Communication in the D-Band</title><author>Maiwald, Tim ; Li, Teng ; Hotopan, George-Roberto ; Kolb, Katharina ; Disch, Karina ; Potschka, Julian ; Haag, Alexander ; Dietz, Marco ; Debaillie, Bjorn ; Zwick, Thomas ; Aufinger, Klaus ; Ferling, Dieter ; Weigel, Robert ; Visweswaran, Akshay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c211t-f4e288e619710532c54754222fa63ebefc46631bad38b78874dba150b9c92d8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>6G mobile communication</topic><topic>Antennas</topic><topic>Arrays</topic><topic>Beam steering</topic><topic>beyond 5G</topic><topic>Bit error rate</topic><topic>Broadband</topic><topic>Broadband antennas</topic><topic>characterization</topic><topic>Circuit design</topic><topic>Circuit synthesis</topic><topic>CMOS</topic><topic>communication</topic><topic>Configurations</topic><topic>D-band</topic><topic>Data transmission</topic><topic>Heterojunction bipolar transistors</topic><topic>high-speed</topic><topic>Integrated circuits</topic><topic>Intermodulation distortion</topic><topic>Literature reviews</topic><topic>Measurement techniques</topic><topic>Millimeter waves</topic><topic>Mixers</topic><topic>Packaging</topic><topic>Passive components</topic><topic>Phase noise</topic><topic>Phase shifters</topic><topic>Phased arrays</topic><topic>prototyping</topic><topic>Quadrature amplitude modulation</topic><topic>Radiators</topic><topic>Radio</topic><topic>Semiconductor devices</topic><topic>semiconductor technologies</topic><topic>Signal paths</topic><topic>Signal to noise ratio</topic><topic>Throughput</topic><topic>transceiver architectures</topic><topic>Transceivers</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maiwald, Tim</creatorcontrib><creatorcontrib>Li, Teng</creatorcontrib><creatorcontrib>Hotopan, George-Roberto</creatorcontrib><creatorcontrib>Kolb, Katharina</creatorcontrib><creatorcontrib>Disch, Karina</creatorcontrib><creatorcontrib>Potschka, Julian</creatorcontrib><creatorcontrib>Haag, Alexander</creatorcontrib><creatorcontrib>Dietz, Marco</creatorcontrib><creatorcontrib>Debaillie, Bjorn</creatorcontrib><creatorcontrib>Zwick, Thomas</creatorcontrib><creatorcontrib>Aufinger, Klaus</creatorcontrib><creatorcontrib>Ferling, Dieter</creatorcontrib><creatorcontrib>Weigel, Robert</creatorcontrib><creatorcontrib>Visweswaran, Akshay</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maiwald, Tim</au><au>Li, Teng</au><au>Hotopan, George-Roberto</au><au>Kolb, Katharina</au><au>Disch, Karina</au><au>Potschka, Julian</au><au>Haag, Alexander</au><au>Dietz, Marco</au><au>Debaillie, Bjorn</au><au>Zwick, Thomas</au><au>Aufinger, Klaus</au><au>Ferling, Dieter</au><au>Weigel, Robert</au><au>Visweswaran, Akshay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of Integrated Systems and Components for 6G Wireless Communication in the D-Band</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>111</volume><issue>3</issue><spage>220</spage><epage>256</epage><pages>220-256</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract><![CDATA[The evolution of wireless communication points to increasing demands on throughput for data-intensive applications in modern society. Integrated millimeter-wave systems with electrical beam-steering capabilities are promising candidates for wireless technologies of the future and are currently the subject of widespread academic and commercial research. The <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band, ranging from 110-170 GHz, offers high aggregate bandwidths (BWs), low atmospheric absorption, and multi-GHz operation at amenable fractional BWs. It, therefore, has the potential to foster efficient, highly integrated wireless-communication systems with data rates approaching 100 Gb/s. This article reviews all aspects of hardware integration against the backdrop of an extensive literature review and outlines the challenges and possible solutions for practical 6G wireless systems in the <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band. To this end, this article covers a number of related topics in depth, which includes system definition, possible radio architectures and array configurations, the scope and potential of integrated circuit (IC) technologies, the design and characterization of key circuit blocks, advances in antenna and packaging technologies for high-frequency systems, and an overview of measurement techniques currently employed at <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band frequencies. A system-level study based on radio-link simulations of different single-carrier quadrature amplitude modulation (QAM) schemes is presented, which quantifies that the impact physical nonidealities, such as signal-to-noise ratio, phase noise, intermodulation distortion, and amplitude and phase imbalances in quadrature signal paths, have on bit-error rates in broadband <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band communication systems. This is followed by a comparative assessment of different arrayed-system configurations that include traditional phased arrays, the use of polarization diversity for the transmission of different or identical data streams, and multiple input multiple output (MIMO) operation. The article also presents an overview of possible transceiver architectures for implementing beam-steering arrays and an outline of the associated tradeoffs. The beam-squinting effect seen in large arrays is also investigated in detail. On the implementation front, we present a comparison between different integrated-circuit technologies for high-frequency applications. These include CMOS and SiGe bipolar complementary metal oxide semiconductor (BiCMOS) heterojunction bipolar transistors (HBTs) in silicon technologies, and MOSFETs, HBTs, and HEMTs in III-V technologies, such as InP and GaAs. Implementation challenges are then addressed, and these include the design of high-frequency circuits in the latest IC technologies, current advances in antenna and packaging technologies, and emerging solutions for hybrid integration. The article also details the design and characterization of critical <inline-formula> <tex-math notation="LaTeX">D </tex-math></inline-formula>-band transceiver circuit blocks, namely, power and low-noise amplifiers, mixers, phase shifters, passive components for quadrature-phase generation, and radiators exploring hybrid antennas, which we have developed over the course of the past five years. These results compliment the literature survey with comparisons with state-of-the-art designs and are applied to radio-link simulations to predict the performance of practicable wireless links.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2023.3240127</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-4003-7575</orcidid><orcidid>https://orcid.org/0000-0002-7975-6171</orcidid><orcidid>https://orcid.org/0000-0002-1268-0766</orcidid><orcidid>https://orcid.org/0000-0002-7884-7987</orcidid><orcidid>https://orcid.org/0000-0002-5036-8490</orcidid><orcidid>https://orcid.org/0000-0001-5252-8235</orcidid><orcidid>https://orcid.org/0000-0002-3131-1800</orcidid><orcidid>https://orcid.org/0000-0003-0198-9423</orcidid><orcidid>https://orcid.org/0000-0002-1984-919X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9219
ispartof Proceedings of the IEEE, 2023-03, Vol.111 (3), p.220-256
issn 0018-9219
1558-2256
language eng
recordid cdi_proquest_journals_2784548552
source IEEE Electronic Library (IEL)
subjects 6G mobile communication
Antennas
Arrays
Beam steering
beyond 5G
Bit error rate
Broadband
Broadband antennas
characterization
Circuit design
Circuit synthesis
CMOS
communication
Configurations
D-band
Data transmission
Heterojunction bipolar transistors
high-speed
Integrated circuits
Intermodulation distortion
Literature reviews
Measurement techniques
Millimeter waves
Mixers
Packaging
Passive components
Phase noise
Phase shifters
Phased arrays
prototyping
Quadrature amplitude modulation
Radiators
Radio
Semiconductor devices
semiconductor technologies
Signal paths
Signal to noise ratio
Throughput
transceiver architectures
Transceivers
Wireless communication
Wireless communications
Wireless sensor networks
title A Review of Integrated Systems and Components for 6G Wireless Communication in the D-Band
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T04%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20Integrated%20Systems%20and%20Components%20for%206G%20Wireless%20Communication%20in%20the%20D-Band&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Maiwald,%20Tim&rft.date=2023-03-01&rft.volume=111&rft.issue=3&rft.spage=220&rft.epage=256&rft.pages=220-256&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2023.3240127&rft_dat=%3Cproquest_RIE%3E2784548552%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784548552&rft_id=info:pmid/&rft_ieee_id=10054484&rfr_iscdi=true