Evaporation of Suspended Nanofluid (SiO2/Water) Droplets: Experimental Results and Modelling

The results of experimental studies and modelling of the evaporation of suspended water droplets containing silicon dioxide SiO 2 nanoparticles at mass fractions 0.02 and 0.07 are presented. The experimental results are analysed using the previously developed model for multicomponent droplet heating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of thermophysics 2023-05, Vol.44 (5), Article 64
Hauptverfasser: Starinskaya, E. M., Miskiv, N. B., Nazarov, A. D., Terekhov, V. V., Terekhov, V. I., Rybdylova, O. D., Sazhin, S. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title International journal of thermophysics
container_volume 44
creator Starinskaya, E. M.
Miskiv, N. B.
Nazarov, A. D.
Terekhov, V. V.
Terekhov, V. I.
Rybdylova, O. D.
Sazhin, S. S.
description The results of experimental studies and modelling of the evaporation of suspended water droplets containing silicon dioxide SiO 2 nanoparticles at mass fractions 0.02 and 0.07 are presented. The experimental results are analysed using the previously developed model for multicomponent droplet heating and evaporation. In this model droplets are assumed to be spherical and the analytical solutions to the heat transfer and species diffusion equations are incorporated into the numerical code. They are used at each timestep of the calculations. Silicon dioxide nanoparticles are considered to be a non-evaporating component. It is demonstrated that both experimental and predicted values of droplet diameters to the power 1.5 decrease almost linearly with time, except at the beginning and the final stages of the evaporation process, and are only weakly affected by the presence of nanoparticles. At the final point in this process, the effect of nanoparticles becomes dominant when their mass fraction at the droplet surface reaches about 40 % and a cenosphere-like structure is formed. Both predicted and observed droplet surface temperatures rapidly decrease during the initial stage of droplet evaporation. After about t = 100 s the predicted surface temperature remains almost constant whilst its experimentally observed values increase with time. This might be related to a decrease in the temperature of ambient air in the vicinity of droplets, not taken into account in the model. Both observed and predicted values of the mass fraction of silicon dioxide at the droplet surfaces are shown to increase with time until they reach about 0.4.
doi_str_mv 10.1007/s10765-023-03164-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2784403072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2784403072</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-7ab712fa7202758243a258fe77ccd76a7401b4797980a50a255a224b1ae1af33</originalsourceid><addsrcrecordid>eNp9kE1LwzAYx4MoOKdfwFPAix7iniRN03qTOV9gOnADPQgha9PRUZOatKLf3mgFb56ew__l-fND6JjCOQWQk0BBpoIA4wQ4TROS7aARFZKRXKRyF42A5oLkLHveRwchbAEglzkfoZfZu26d113tLHYVXvahNbY0JX7Q1lVNX5f4dFkv2ORJd8af4Svv2sZ04QLPPlrj61djO93gRxP6pgtY2xLfu9I0TW03h2iv0k0wR793jFbXs9X0lswXN3fTyzkpeMo7IvVaUlZpyYBJkbGEayayykhZFKVMtUyArhMZB2egBURRaMaSNdWG6orzMToZalvv3noTOrV1vbfxo2IySxLgIFl0scFVeBeCN5Vq43rtPxUF9Q1RDRBVhKh-IKoshvgQCtFsN8b_Vf-T-gIPfXPr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784403072</pqid></control><display><type>article</type><title>Evaporation of Suspended Nanofluid (SiO2/Water) Droplets: Experimental Results and Modelling</title><source>SpringerLink Journals - AutoHoldings</source><creator>Starinskaya, E. M. ; Miskiv, N. B. ; Nazarov, A. D. ; Terekhov, V. V. ; Terekhov, V. I. ; Rybdylova, O. D. ; Sazhin, S. S.</creator><creatorcontrib>Starinskaya, E. M. ; Miskiv, N. B. ; Nazarov, A. D. ; Terekhov, V. V. ; Terekhov, V. I. ; Rybdylova, O. D. ; Sazhin, S. S.</creatorcontrib><description>The results of experimental studies and modelling of the evaporation of suspended water droplets containing silicon dioxide SiO 2 nanoparticles at mass fractions 0.02 and 0.07 are presented. The experimental results are analysed using the previously developed model for multicomponent droplet heating and evaporation. In this model droplets are assumed to be spherical and the analytical solutions to the heat transfer and species diffusion equations are incorporated into the numerical code. They are used at each timestep of the calculations. Silicon dioxide nanoparticles are considered to be a non-evaporating component. It is demonstrated that both experimental and predicted values of droplet diameters to the power 1.5 decrease almost linearly with time, except at the beginning and the final stages of the evaporation process, and are only weakly affected by the presence of nanoparticles. At the final point in this process, the effect of nanoparticles becomes dominant when their mass fraction at the droplet surface reaches about 40 % and a cenosphere-like structure is formed. Both predicted and observed droplet surface temperatures rapidly decrease during the initial stage of droplet evaporation. After about t = 100 s the predicted surface temperature remains almost constant whilst its experimentally observed values increase with time. This might be related to a decrease in the temperature of ambient air in the vicinity of droplets, not taken into account in the model. Both observed and predicted values of the mass fraction of silicon dioxide at the droplet surfaces are shown to increase with time until they reach about 0.4.</description><identifier>ISSN: 0195-928X</identifier><identifier>EISSN: 1572-9567</identifier><identifier>DOI: 10.1007/s10765-023-03164-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classical Mechanics ; Condensed Matter Physics ; Droplets ; Evaporation ; Exact solutions ; Geophysics ; Industrial Chemistry/Chemical Engineering ; Modelling ; Nanofluids ; Nanoparticles ; Physical Chemistry ; Physics ; Physics and Astronomy ; Silica ; Silicon dioxide ; Species diffusion ; Surface temperature ; Thermodynamics ; Water drops</subject><ispartof>International journal of thermophysics, 2023-05, Vol.44 (5), Article 64</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-7ab712fa7202758243a258fe77ccd76a7401b4797980a50a255a224b1ae1af33</citedby><cites>FETCH-LOGICAL-c363t-7ab712fa7202758243a258fe77ccd76a7401b4797980a50a255a224b1ae1af33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10765-023-03164-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10765-023-03164-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Starinskaya, E. M.</creatorcontrib><creatorcontrib>Miskiv, N. B.</creatorcontrib><creatorcontrib>Nazarov, A. D.</creatorcontrib><creatorcontrib>Terekhov, V. V.</creatorcontrib><creatorcontrib>Terekhov, V. I.</creatorcontrib><creatorcontrib>Rybdylova, O. D.</creatorcontrib><creatorcontrib>Sazhin, S. S.</creatorcontrib><title>Evaporation of Suspended Nanofluid (SiO2/Water) Droplets: Experimental Results and Modelling</title><title>International journal of thermophysics</title><addtitle>Int J Thermophys</addtitle><description>The results of experimental studies and modelling of the evaporation of suspended water droplets containing silicon dioxide SiO 2 nanoparticles at mass fractions 0.02 and 0.07 are presented. The experimental results are analysed using the previously developed model for multicomponent droplet heating and evaporation. In this model droplets are assumed to be spherical and the analytical solutions to the heat transfer and species diffusion equations are incorporated into the numerical code. They are used at each timestep of the calculations. Silicon dioxide nanoparticles are considered to be a non-evaporating component. It is demonstrated that both experimental and predicted values of droplet diameters to the power 1.5 decrease almost linearly with time, except at the beginning and the final stages of the evaporation process, and are only weakly affected by the presence of nanoparticles. At the final point in this process, the effect of nanoparticles becomes dominant when their mass fraction at the droplet surface reaches about 40 % and a cenosphere-like structure is formed. Both predicted and observed droplet surface temperatures rapidly decrease during the initial stage of droplet evaporation. After about t = 100 s the predicted surface temperature remains almost constant whilst its experimentally observed values increase with time. This might be related to a decrease in the temperature of ambient air in the vicinity of droplets, not taken into account in the model. Both observed and predicted values of the mass fraction of silicon dioxide at the droplet surfaces are shown to increase with time until they reach about 0.4.</description><subject>Classical Mechanics</subject><subject>Condensed Matter Physics</subject><subject>Droplets</subject><subject>Evaporation</subject><subject>Exact solutions</subject><subject>Geophysics</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Modelling</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Species diffusion</subject><subject>Surface temperature</subject><subject>Thermodynamics</subject><subject>Water drops</subject><issn>0195-928X</issn><issn>1572-9567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LwzAYx4MoOKdfwFPAix7iniRN03qTOV9gOnADPQgha9PRUZOatKLf3mgFb56ew__l-fND6JjCOQWQk0BBpoIA4wQ4TROS7aARFZKRXKRyF42A5oLkLHveRwchbAEglzkfoZfZu26d113tLHYVXvahNbY0JX7Q1lVNX5f4dFkv2ORJd8af4Svv2sZ04QLPPlrj61djO93gRxP6pgtY2xLfu9I0TW03h2iv0k0wR793jFbXs9X0lswXN3fTyzkpeMo7IvVaUlZpyYBJkbGEayayykhZFKVMtUyArhMZB2egBURRaMaSNdWG6orzMToZalvv3noTOrV1vbfxo2IySxLgIFl0scFVeBeCN5Vq43rtPxUF9Q1RDRBVhKh-IKoshvgQCtFsN8b_Vf-T-gIPfXPr</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Starinskaya, E. M.</creator><creator>Miskiv, N. B.</creator><creator>Nazarov, A. D.</creator><creator>Terekhov, V. V.</creator><creator>Terekhov, V. I.</creator><creator>Rybdylova, O. D.</creator><creator>Sazhin, S. S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230501</creationdate><title>Evaporation of Suspended Nanofluid (SiO2/Water) Droplets: Experimental Results and Modelling</title><author>Starinskaya, E. M. ; Miskiv, N. B. ; Nazarov, A. D. ; Terekhov, V. V. ; Terekhov, V. I. ; Rybdylova, O. D. ; Sazhin, S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-7ab712fa7202758243a258fe77ccd76a7401b4797980a50a255a224b1ae1af33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classical Mechanics</topic><topic>Condensed Matter Physics</topic><topic>Droplets</topic><topic>Evaporation</topic><topic>Exact solutions</topic><topic>Geophysics</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Modelling</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Species diffusion</topic><topic>Surface temperature</topic><topic>Thermodynamics</topic><topic>Water drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Starinskaya, E. M.</creatorcontrib><creatorcontrib>Miskiv, N. B.</creatorcontrib><creatorcontrib>Nazarov, A. D.</creatorcontrib><creatorcontrib>Terekhov, V. V.</creatorcontrib><creatorcontrib>Terekhov, V. I.</creatorcontrib><creatorcontrib>Rybdylova, O. D.</creatorcontrib><creatorcontrib>Sazhin, S. S.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Starinskaya, E. M.</au><au>Miskiv, N. B.</au><au>Nazarov, A. D.</au><au>Terekhov, V. V.</au><au>Terekhov, V. I.</au><au>Rybdylova, O. D.</au><au>Sazhin, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaporation of Suspended Nanofluid (SiO2/Water) Droplets: Experimental Results and Modelling</atitle><jtitle>International journal of thermophysics</jtitle><stitle>Int J Thermophys</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>44</volume><issue>5</issue><artnum>64</artnum><issn>0195-928X</issn><eissn>1572-9567</eissn><abstract>The results of experimental studies and modelling of the evaporation of suspended water droplets containing silicon dioxide SiO 2 nanoparticles at mass fractions 0.02 and 0.07 are presented. The experimental results are analysed using the previously developed model for multicomponent droplet heating and evaporation. In this model droplets are assumed to be spherical and the analytical solutions to the heat transfer and species diffusion equations are incorporated into the numerical code. They are used at each timestep of the calculations. Silicon dioxide nanoparticles are considered to be a non-evaporating component. It is demonstrated that both experimental and predicted values of droplet diameters to the power 1.5 decrease almost linearly with time, except at the beginning and the final stages of the evaporation process, and are only weakly affected by the presence of nanoparticles. At the final point in this process, the effect of nanoparticles becomes dominant when their mass fraction at the droplet surface reaches about 40 % and a cenosphere-like structure is formed. Both predicted and observed droplet surface temperatures rapidly decrease during the initial stage of droplet evaporation. After about t = 100 s the predicted surface temperature remains almost constant whilst its experimentally observed values increase with time. This might be related to a decrease in the temperature of ambient air in the vicinity of droplets, not taken into account in the model. Both observed and predicted values of the mass fraction of silicon dioxide at the droplet surfaces are shown to increase with time until they reach about 0.4.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10765-023-03164-8</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0195-928X
ispartof International journal of thermophysics, 2023-05, Vol.44 (5), Article 64
issn 0195-928X
1572-9567
language eng
recordid cdi_proquest_journals_2784403072
source SpringerLink Journals - AutoHoldings
subjects Classical Mechanics
Condensed Matter Physics
Droplets
Evaporation
Exact solutions
Geophysics
Industrial Chemistry/Chemical Engineering
Modelling
Nanofluids
Nanoparticles
Physical Chemistry
Physics
Physics and Astronomy
Silica
Silicon dioxide
Species diffusion
Surface temperature
Thermodynamics
Water drops
title Evaporation of Suspended Nanofluid (SiO2/Water) Droplets: Experimental Results and Modelling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T13%3A36%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaporation%20of%20Suspended%20Nanofluid%20(SiO2/Water)%20Droplets:%20Experimental%20Results%20and%20Modelling&rft.jtitle=International%20journal%20of%20thermophysics&rft.au=Starinskaya,%20E.%20M.&rft.date=2023-05-01&rft.volume=44&rft.issue=5&rft.artnum=64&rft.issn=0195-928X&rft.eissn=1572-9567&rft_id=info:doi/10.1007/s10765-023-03164-8&rft_dat=%3Cproquest_cross%3E2784403072%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784403072&rft_id=info:pmid/&rfr_iscdi=true