TiO2 nanoparticle enhanced high temperature proton conductivity in hyperbranched sulfonated polyarylene aliphatic ketones for proton exchange membrane fuel cell applications

A new hyperbranched sulfonated poly(arylene aliphatic ketones) (HB‐SPAAK) has been synthesized and loaded with titania nanoparticles to obtain HB‐SPAAK/TiO2 nanocomposites for thermally stable proton‐conducting electrolyte membrane fuel cell (PEMFC) applications. The synthesis of HB‐SPAAKs was carri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2023-04, Vol.140 (15), p.n/a
Hauptverfasser: Senthil, Theerthagiri, Prabukanthan, Peethambaram, Paradesi, Deivanayagam, Dinakaran, Kannaiyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 15
container_start_page
container_title Journal of applied polymer science
container_volume 140
creator Senthil, Theerthagiri
Prabukanthan, Peethambaram
Paradesi, Deivanayagam
Dinakaran, Kannaiyan
description A new hyperbranched sulfonated poly(arylene aliphatic ketones) (HB‐SPAAK) has been synthesized and loaded with titania nanoparticles to obtain HB‐SPAAK/TiO2 nanocomposites for thermally stable proton‐conducting electrolyte membrane fuel cell (PEMFC) applications. The synthesis of HB‐SPAAKs was carried out through the polycondensation reaction of different aliphatic and aromatic acids with simultaneous loss of H2O, trifluromethane sulfonic acid used as catalyst. The long chain hyperbranched polymers and TiO2‐loaded nanocomposites were characterized by FT‐IR, 1H‐NMR, SEM and HR‐TEM. Proton conductivity (PC), swelling ratio, water uptake and oxidative stability. The SEM image of TiO2 NPs and HB‐SPAAKs/TiO2 nanocomposites membrane clearly showed the spherical of TiO2 and porous structure of HB‐SPAAKs with a pore diameter of 2–50 μm. TEM image reveals the uniform particle size distribution of TiO2 nanoparticles having a nanosize of 100 nm. TiO2 loaded polymer nanocomposites showed lower values of W/U and S/R when compared to the unmodified HB‐SPAAK, while 3% TiO2 loaded HB‐SPAAKs exhibited a threefold increment of proton conductivity of 1.439 × 10−2 S cm−1 compared to HB‐SPAAKs (0.41 x 10−2 S cm−1) and lower than that of Nafion 117 (0.1003 S cm−1 at 80°C). The 5% TiO2 NPs‐embedded with HB‐SPAAKs nanocomposites membranes also presented admirable oxidative stability with a degradation value of 13.8% during immersion in Fenton reagent for 8 h at 70°C. Preparation of TiO2 dispersed hyper branched Polymer nanocomposites
doi_str_mv 10.1002/app.53737
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2784324919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2784324919</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1537-5061f4ffc3c843fc24db99243022a412565efbeed21e37a3ccb5e28ed5d9e47a3</originalsourceid><addsrcrecordid>eNo1Uc1OwzAMjhBIjMGBN4jEuSxJ23U9ook_adJ2GOcqTZ01I0tC2gJ9KN4Rw-Bky_5-_MmEXHN2yxkTMxnCbZ4WaXFCJpyVRZLNxeKUTHDHk0VZ5ufkouv2jHGes_mEfG3NWlAnnQ8y9kZZoOBa6RQ0tDW7lvZwCBBlP0SgIfreO6q8awbVm3fTj9Q42o6IqCOSWmR1g9XeyR7b4O0o42jBAZXWhFaiA30FFIGOah__FeFToecO6AEOP0JA9QCWKrCWYiJrFDK96y7JmZa2g6u_OiUvD_fb5VOyWj8-L-9WSeAYPsFkXGdaq1QtslQrkTV1WYosZULIjIt8noOuARrBIS1kqlSdg1hAkzclZDiYkpujLt73NkDXV3s_RIeWlShQUmQlLxE1O6I-jIWxCtEcMG3FWfXzigoPr35fUd1tNr9N-g2C54Qy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784324919</pqid></control><display><type>article</type><title>TiO2 nanoparticle enhanced high temperature proton conductivity in hyperbranched sulfonated polyarylene aliphatic ketones for proton exchange membrane fuel cell applications</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Senthil, Theerthagiri ; Prabukanthan, Peethambaram ; Paradesi, Deivanayagam ; Dinakaran, Kannaiyan</creator><creatorcontrib>Senthil, Theerthagiri ; Prabukanthan, Peethambaram ; Paradesi, Deivanayagam ; Dinakaran, Kannaiyan</creatorcontrib><description>A new hyperbranched sulfonated poly(arylene aliphatic ketones) (HB‐SPAAK) has been synthesized and loaded with titania nanoparticles to obtain HB‐SPAAK/TiO2 nanocomposites for thermally stable proton‐conducting electrolyte membrane fuel cell (PEMFC) applications. The synthesis of HB‐SPAAKs was carried out through the polycondensation reaction of different aliphatic and aromatic acids with simultaneous loss of H2O, trifluromethane sulfonic acid used as catalyst. The long chain hyperbranched polymers and TiO2‐loaded nanocomposites were characterized by FT‐IR, 1H‐NMR, SEM and HR‐TEM. Proton conductivity (PC), swelling ratio, water uptake and oxidative stability. The SEM image of TiO2 NPs and HB‐SPAAKs/TiO2 nanocomposites membrane clearly showed the spherical of TiO2 and porous structure of HB‐SPAAKs with a pore diameter of 2–50 μm. TEM image reveals the uniform particle size distribution of TiO2 nanoparticles having a nanosize of 100 nm. TiO2 loaded polymer nanocomposites showed lower values of W/U and S/R when compared to the unmodified HB‐SPAAK, while 3% TiO2 loaded HB‐SPAAKs exhibited a threefold increment of proton conductivity of 1.439 × 10−2 S cm−1 compared to HB‐SPAAKs (0.41 x 10−2 S cm−1) and lower than that of Nafion 117 (0.1003 S cm−1 at 80°C). The 5% TiO2 NPs‐embedded with HB‐SPAAKs nanocomposites membranes also presented admirable oxidative stability with a degradation value of 13.8% during immersion in Fenton reagent for 8 h at 70°C. Preparation of TiO2 dispersed hyper branched Polymer nanocomposites</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.53737</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Aliphatic compounds ; fuel cell membrane ; Fuel cells ; High temperature ; hyperbranched polymer ; ion exchange capacity ; Ketones ; Materials science ; Nanocomposites ; nanocomposites membrane ; Nanoparticles ; NMR ; Nuclear magnetic resonance ; Particle size distribution ; Polycondensation reactions ; Polymers ; proton conductivity ; Proton exchange membrane fuel cells ; Protons ; Reagents ; Sulfonic acid ; Swelling ratio ; Thermal stability ; TiO2 nanoparticle ; Titanium dioxide</subject><ispartof>Journal of applied polymer science, 2023-04, Vol.140 (15), p.n/a</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5992-2542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.53737$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.53737$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Senthil, Theerthagiri</creatorcontrib><creatorcontrib>Prabukanthan, Peethambaram</creatorcontrib><creatorcontrib>Paradesi, Deivanayagam</creatorcontrib><creatorcontrib>Dinakaran, Kannaiyan</creatorcontrib><title>TiO2 nanoparticle enhanced high temperature proton conductivity in hyperbranched sulfonated polyarylene aliphatic ketones for proton exchange membrane fuel cell applications</title><title>Journal of applied polymer science</title><description>A new hyperbranched sulfonated poly(arylene aliphatic ketones) (HB‐SPAAK) has been synthesized and loaded with titania nanoparticles to obtain HB‐SPAAK/TiO2 nanocomposites for thermally stable proton‐conducting electrolyte membrane fuel cell (PEMFC) applications. The synthesis of HB‐SPAAKs was carried out through the polycondensation reaction of different aliphatic and aromatic acids with simultaneous loss of H2O, trifluromethane sulfonic acid used as catalyst. The long chain hyperbranched polymers and TiO2‐loaded nanocomposites were characterized by FT‐IR, 1H‐NMR, SEM and HR‐TEM. Proton conductivity (PC), swelling ratio, water uptake and oxidative stability. The SEM image of TiO2 NPs and HB‐SPAAKs/TiO2 nanocomposites membrane clearly showed the spherical of TiO2 and porous structure of HB‐SPAAKs with a pore diameter of 2–50 μm. TEM image reveals the uniform particle size distribution of TiO2 nanoparticles having a nanosize of 100 nm. TiO2 loaded polymer nanocomposites showed lower values of W/U and S/R when compared to the unmodified HB‐SPAAK, while 3% TiO2 loaded HB‐SPAAKs exhibited a threefold increment of proton conductivity of 1.439 × 10−2 S cm−1 compared to HB‐SPAAKs (0.41 x 10−2 S cm−1) and lower than that of Nafion 117 (0.1003 S cm−1 at 80°C). The 5% TiO2 NPs‐embedded with HB‐SPAAKs nanocomposites membranes also presented admirable oxidative stability with a degradation value of 13.8% during immersion in Fenton reagent for 8 h at 70°C. Preparation of TiO2 dispersed hyper branched Polymer nanocomposites</description><subject>Aliphatic compounds</subject><subject>fuel cell membrane</subject><subject>Fuel cells</subject><subject>High temperature</subject><subject>hyperbranched polymer</subject><subject>ion exchange capacity</subject><subject>Ketones</subject><subject>Materials science</subject><subject>Nanocomposites</subject><subject>nanocomposites membrane</subject><subject>Nanoparticles</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Particle size distribution</subject><subject>Polycondensation reactions</subject><subject>Polymers</subject><subject>proton conductivity</subject><subject>Proton exchange membrane fuel cells</subject><subject>Protons</subject><subject>Reagents</subject><subject>Sulfonic acid</subject><subject>Swelling ratio</subject><subject>Thermal stability</subject><subject>TiO2 nanoparticle</subject><subject>Titanium dioxide</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo1Uc1OwzAMjhBIjMGBN4jEuSxJ23U9ook_adJ2GOcqTZ01I0tC2gJ9KN4Rw-Bky_5-_MmEXHN2yxkTMxnCbZ4WaXFCJpyVRZLNxeKUTHDHk0VZ5ufkouv2jHGes_mEfG3NWlAnnQ8y9kZZoOBa6RQ0tDW7lvZwCBBlP0SgIfreO6q8awbVm3fTj9Q42o6IqCOSWmR1g9XeyR7b4O0o42jBAZXWhFaiA30FFIGOah__FeFToecO6AEOP0JA9QCWKrCWYiJrFDK96y7JmZa2g6u_OiUvD_fb5VOyWj8-L-9WSeAYPsFkXGdaq1QtslQrkTV1WYosZULIjIt8noOuARrBIS1kqlSdg1hAkzclZDiYkpujLt73NkDXV3s_RIeWlShQUmQlLxE1O6I-jIWxCtEcMG3FWfXzigoPr35fUd1tNr9N-g2C54Qy</recordid><startdate>20230415</startdate><enddate>20230415</enddate><creator>Senthil, Theerthagiri</creator><creator>Prabukanthan, Peethambaram</creator><creator>Paradesi, Deivanayagam</creator><creator>Dinakaran, Kannaiyan</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-5992-2542</orcidid></search><sort><creationdate>20230415</creationdate><title>TiO2 nanoparticle enhanced high temperature proton conductivity in hyperbranched sulfonated polyarylene aliphatic ketones for proton exchange membrane fuel cell applications</title><author>Senthil, Theerthagiri ; Prabukanthan, Peethambaram ; Paradesi, Deivanayagam ; Dinakaran, Kannaiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1537-5061f4ffc3c843fc24db99243022a412565efbeed21e37a3ccb5e28ed5d9e47a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aliphatic compounds</topic><topic>fuel cell membrane</topic><topic>Fuel cells</topic><topic>High temperature</topic><topic>hyperbranched polymer</topic><topic>ion exchange capacity</topic><topic>Ketones</topic><topic>Materials science</topic><topic>Nanocomposites</topic><topic>nanocomposites membrane</topic><topic>Nanoparticles</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Particle size distribution</topic><topic>Polycondensation reactions</topic><topic>Polymers</topic><topic>proton conductivity</topic><topic>Proton exchange membrane fuel cells</topic><topic>Protons</topic><topic>Reagents</topic><topic>Sulfonic acid</topic><topic>Swelling ratio</topic><topic>Thermal stability</topic><topic>TiO2 nanoparticle</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Senthil, Theerthagiri</creatorcontrib><creatorcontrib>Prabukanthan, Peethambaram</creatorcontrib><creatorcontrib>Paradesi, Deivanayagam</creatorcontrib><creatorcontrib>Dinakaran, Kannaiyan</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Senthil, Theerthagiri</au><au>Prabukanthan, Peethambaram</au><au>Paradesi, Deivanayagam</au><au>Dinakaran, Kannaiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TiO2 nanoparticle enhanced high temperature proton conductivity in hyperbranched sulfonated polyarylene aliphatic ketones for proton exchange membrane fuel cell applications</atitle><jtitle>Journal of applied polymer science</jtitle><date>2023-04-15</date><risdate>2023</risdate><volume>140</volume><issue>15</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>A new hyperbranched sulfonated poly(arylene aliphatic ketones) (HB‐SPAAK) has been synthesized and loaded with titania nanoparticles to obtain HB‐SPAAK/TiO2 nanocomposites for thermally stable proton‐conducting electrolyte membrane fuel cell (PEMFC) applications. The synthesis of HB‐SPAAKs was carried out through the polycondensation reaction of different aliphatic and aromatic acids with simultaneous loss of H2O, trifluromethane sulfonic acid used as catalyst. The long chain hyperbranched polymers and TiO2‐loaded nanocomposites were characterized by FT‐IR, 1H‐NMR, SEM and HR‐TEM. Proton conductivity (PC), swelling ratio, water uptake and oxidative stability. The SEM image of TiO2 NPs and HB‐SPAAKs/TiO2 nanocomposites membrane clearly showed the spherical of TiO2 and porous structure of HB‐SPAAKs with a pore diameter of 2–50 μm. TEM image reveals the uniform particle size distribution of TiO2 nanoparticles having a nanosize of 100 nm. TiO2 loaded polymer nanocomposites showed lower values of W/U and S/R when compared to the unmodified HB‐SPAAK, while 3% TiO2 loaded HB‐SPAAKs exhibited a threefold increment of proton conductivity of 1.439 × 10−2 S cm−1 compared to HB‐SPAAKs (0.41 x 10−2 S cm−1) and lower than that of Nafion 117 (0.1003 S cm−1 at 80°C). The 5% TiO2 NPs‐embedded with HB‐SPAAKs nanocomposites membranes also presented admirable oxidative stability with a degradation value of 13.8% during immersion in Fenton reagent for 8 h at 70°C. Preparation of TiO2 dispersed hyper branched Polymer nanocomposites</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.53737</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5992-2542</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2023-04, Vol.140 (15), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2784324919
source Wiley Online Library - AutoHoldings Journals
subjects Aliphatic compounds
fuel cell membrane
Fuel cells
High temperature
hyperbranched polymer
ion exchange capacity
Ketones
Materials science
Nanocomposites
nanocomposites membrane
Nanoparticles
NMR
Nuclear magnetic resonance
Particle size distribution
Polycondensation reactions
Polymers
proton conductivity
Proton exchange membrane fuel cells
Protons
Reagents
Sulfonic acid
Swelling ratio
Thermal stability
TiO2 nanoparticle
Titanium dioxide
title TiO2 nanoparticle enhanced high temperature proton conductivity in hyperbranched sulfonated polyarylene aliphatic ketones for proton exchange membrane fuel cell applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TiO2%20nanoparticle%20enhanced%20high%20temperature%20proton%20conductivity%20in%20hyperbranched%20sulfonated%20polyarylene%20aliphatic%20ketones%20for%20proton%20exchange%20membrane%20fuel%20cell%20applications&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Senthil,%20Theerthagiri&rft.date=2023-04-15&rft.volume=140&rft.issue=15&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.53737&rft_dat=%3Cproquest_wiley%3E2784324919%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784324919&rft_id=info:pmid/&rfr_iscdi=true