TiO2 nanoparticle enhanced high temperature proton conductivity in hyperbranched sulfonated polyarylene aliphatic ketones for proton exchange membrane fuel cell applications
A new hyperbranched sulfonated poly(arylene aliphatic ketones) (HB‐SPAAK) has been synthesized and loaded with titania nanoparticles to obtain HB‐SPAAK/TiO2 nanocomposites for thermally stable proton‐conducting electrolyte membrane fuel cell (PEMFC) applications. The synthesis of HB‐SPAAKs was carri...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2023-04, Vol.140 (15), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 15 |
container_start_page | |
container_title | Journal of applied polymer science |
container_volume | 140 |
creator | Senthil, Theerthagiri Prabukanthan, Peethambaram Paradesi, Deivanayagam Dinakaran, Kannaiyan |
description | A new hyperbranched sulfonated poly(arylene aliphatic ketones) (HB‐SPAAK) has been synthesized and loaded with titania nanoparticles to obtain HB‐SPAAK/TiO2 nanocomposites for thermally stable proton‐conducting electrolyte membrane fuel cell (PEMFC) applications. The synthesis of HB‐SPAAKs was carried out through the polycondensation reaction of different aliphatic and aromatic acids with simultaneous loss of H2O, trifluromethane sulfonic acid used as catalyst. The long chain hyperbranched polymers and TiO2‐loaded nanocomposites were characterized by FT‐IR, 1H‐NMR, SEM and HR‐TEM. Proton conductivity (PC), swelling ratio, water uptake and oxidative stability. The SEM image of TiO2 NPs and HB‐SPAAKs/TiO2 nanocomposites membrane clearly showed the spherical of TiO2 and porous structure of HB‐SPAAKs with a pore diameter of 2–50 μm. TEM image reveals the uniform particle size distribution of TiO2 nanoparticles having a nanosize of 100 nm. TiO2 loaded polymer nanocomposites showed lower values of W/U and S/R when compared to the unmodified HB‐SPAAK, while 3% TiO2 loaded HB‐SPAAKs exhibited a threefold increment of proton conductivity of 1.439 × 10−2 S cm−1 compared to HB‐SPAAKs (0.41 x 10−2 S cm−1) and lower than that of Nafion 117 (0.1003 S cm−1 at 80°C). The 5% TiO2 NPs‐embedded with HB‐SPAAKs nanocomposites membranes also presented admirable oxidative stability with a degradation value of 13.8% during immersion in Fenton reagent for 8 h at 70°C.
Preparation of TiO2 dispersed hyper branched Polymer nanocomposites |
doi_str_mv | 10.1002/app.53737 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2784324919</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2784324919</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1537-5061f4ffc3c843fc24db99243022a412565efbeed21e37a3ccb5e28ed5d9e47a3</originalsourceid><addsrcrecordid>eNo1Uc1OwzAMjhBIjMGBN4jEuSxJ23U9ook_adJ2GOcqTZ01I0tC2gJ9KN4Rw-Bky_5-_MmEXHN2yxkTMxnCbZ4WaXFCJpyVRZLNxeKUTHDHk0VZ5ufkouv2jHGes_mEfG3NWlAnnQ8y9kZZoOBa6RQ0tDW7lvZwCBBlP0SgIfreO6q8awbVm3fTj9Q42o6IqCOSWmR1g9XeyR7b4O0o42jBAZXWhFaiA30FFIGOah__FeFToecO6AEOP0JA9QCWKrCWYiJrFDK96y7JmZa2g6u_OiUvD_fb5VOyWj8-L-9WSeAYPsFkXGdaq1QtslQrkTV1WYosZULIjIt8noOuARrBIS1kqlSdg1hAkzclZDiYkpujLt73NkDXV3s_RIeWlShQUmQlLxE1O6I-jIWxCtEcMG3FWfXzigoPr35fUd1tNr9N-g2C54Qy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784324919</pqid></control><display><type>article</type><title>TiO2 nanoparticle enhanced high temperature proton conductivity in hyperbranched sulfonated polyarylene aliphatic ketones for proton exchange membrane fuel cell applications</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Senthil, Theerthagiri ; Prabukanthan, Peethambaram ; Paradesi, Deivanayagam ; Dinakaran, Kannaiyan</creator><creatorcontrib>Senthil, Theerthagiri ; Prabukanthan, Peethambaram ; Paradesi, Deivanayagam ; Dinakaran, Kannaiyan</creatorcontrib><description>A new hyperbranched sulfonated poly(arylene aliphatic ketones) (HB‐SPAAK) has been synthesized and loaded with titania nanoparticles to obtain HB‐SPAAK/TiO2 nanocomposites for thermally stable proton‐conducting electrolyte membrane fuel cell (PEMFC) applications. The synthesis of HB‐SPAAKs was carried out through the polycondensation reaction of different aliphatic and aromatic acids with simultaneous loss of H2O, trifluromethane sulfonic acid used as catalyst. The long chain hyperbranched polymers and TiO2‐loaded nanocomposites were characterized by FT‐IR, 1H‐NMR, SEM and HR‐TEM. Proton conductivity (PC), swelling ratio, water uptake and oxidative stability. The SEM image of TiO2 NPs and HB‐SPAAKs/TiO2 nanocomposites membrane clearly showed the spherical of TiO2 and porous structure of HB‐SPAAKs with a pore diameter of 2–50 μm. TEM image reveals the uniform particle size distribution of TiO2 nanoparticles having a nanosize of 100 nm. TiO2 loaded polymer nanocomposites showed lower values of W/U and S/R when compared to the unmodified HB‐SPAAK, while 3% TiO2 loaded HB‐SPAAKs exhibited a threefold increment of proton conductivity of 1.439 × 10−2 S cm−1 compared to HB‐SPAAKs (0.41 x 10−2 S cm−1) and lower than that of Nafion 117 (0.1003 S cm−1 at 80°C). The 5% TiO2 NPs‐embedded with HB‐SPAAKs nanocomposites membranes also presented admirable oxidative stability with a degradation value of 13.8% during immersion in Fenton reagent for 8 h at 70°C.
Preparation of TiO2 dispersed hyper branched Polymer nanocomposites</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.53737</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Aliphatic compounds ; fuel cell membrane ; Fuel cells ; High temperature ; hyperbranched polymer ; ion exchange capacity ; Ketones ; Materials science ; Nanocomposites ; nanocomposites membrane ; Nanoparticles ; NMR ; Nuclear magnetic resonance ; Particle size distribution ; Polycondensation reactions ; Polymers ; proton conductivity ; Proton exchange membrane fuel cells ; Protons ; Reagents ; Sulfonic acid ; Swelling ratio ; Thermal stability ; TiO2 nanoparticle ; Titanium dioxide</subject><ispartof>Journal of applied polymer science, 2023-04, Vol.140 (15), p.n/a</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5992-2542</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.53737$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.53737$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Senthil, Theerthagiri</creatorcontrib><creatorcontrib>Prabukanthan, Peethambaram</creatorcontrib><creatorcontrib>Paradesi, Deivanayagam</creatorcontrib><creatorcontrib>Dinakaran, Kannaiyan</creatorcontrib><title>TiO2 nanoparticle enhanced high temperature proton conductivity in hyperbranched sulfonated polyarylene aliphatic ketones for proton exchange membrane fuel cell applications</title><title>Journal of applied polymer science</title><description>A new hyperbranched sulfonated poly(arylene aliphatic ketones) (HB‐SPAAK) has been synthesized and loaded with titania nanoparticles to obtain HB‐SPAAK/TiO2 nanocomposites for thermally stable proton‐conducting electrolyte membrane fuel cell (PEMFC) applications. The synthesis of HB‐SPAAKs was carried out through the polycondensation reaction of different aliphatic and aromatic acids with simultaneous loss of H2O, trifluromethane sulfonic acid used as catalyst. The long chain hyperbranched polymers and TiO2‐loaded nanocomposites were characterized by FT‐IR, 1H‐NMR, SEM and HR‐TEM. Proton conductivity (PC), swelling ratio, water uptake and oxidative stability. The SEM image of TiO2 NPs and HB‐SPAAKs/TiO2 nanocomposites membrane clearly showed the spherical of TiO2 and porous structure of HB‐SPAAKs with a pore diameter of 2–50 μm. TEM image reveals the uniform particle size distribution of TiO2 nanoparticles having a nanosize of 100 nm. TiO2 loaded polymer nanocomposites showed lower values of W/U and S/R when compared to the unmodified HB‐SPAAK, while 3% TiO2 loaded HB‐SPAAKs exhibited a threefold increment of proton conductivity of 1.439 × 10−2 S cm−1 compared to HB‐SPAAKs (0.41 x 10−2 S cm−1) and lower than that of Nafion 117 (0.1003 S cm−1 at 80°C). The 5% TiO2 NPs‐embedded with HB‐SPAAKs nanocomposites membranes also presented admirable oxidative stability with a degradation value of 13.8% during immersion in Fenton reagent for 8 h at 70°C.
Preparation of TiO2 dispersed hyper branched Polymer nanocomposites</description><subject>Aliphatic compounds</subject><subject>fuel cell membrane</subject><subject>Fuel cells</subject><subject>High temperature</subject><subject>hyperbranched polymer</subject><subject>ion exchange capacity</subject><subject>Ketones</subject><subject>Materials science</subject><subject>Nanocomposites</subject><subject>nanocomposites membrane</subject><subject>Nanoparticles</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Particle size distribution</subject><subject>Polycondensation reactions</subject><subject>Polymers</subject><subject>proton conductivity</subject><subject>Proton exchange membrane fuel cells</subject><subject>Protons</subject><subject>Reagents</subject><subject>Sulfonic acid</subject><subject>Swelling ratio</subject><subject>Thermal stability</subject><subject>TiO2 nanoparticle</subject><subject>Titanium dioxide</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo1Uc1OwzAMjhBIjMGBN4jEuSxJ23U9ook_adJ2GOcqTZ01I0tC2gJ9KN4Rw-Bky_5-_MmEXHN2yxkTMxnCbZ4WaXFCJpyVRZLNxeKUTHDHk0VZ5ufkouv2jHGes_mEfG3NWlAnnQ8y9kZZoOBa6RQ0tDW7lvZwCBBlP0SgIfreO6q8awbVm3fTj9Q42o6IqCOSWmR1g9XeyR7b4O0o42jBAZXWhFaiA30FFIGOah__FeFToecO6AEOP0JA9QCWKrCWYiJrFDK96y7JmZa2g6u_OiUvD_fb5VOyWj8-L-9WSeAYPsFkXGdaq1QtslQrkTV1WYosZULIjIt8noOuARrBIS1kqlSdg1hAkzclZDiYkpujLt73NkDXV3s_RIeWlShQUmQlLxE1O6I-jIWxCtEcMG3FWfXzigoPr35fUd1tNr9N-g2C54Qy</recordid><startdate>20230415</startdate><enddate>20230415</enddate><creator>Senthil, Theerthagiri</creator><creator>Prabukanthan, Peethambaram</creator><creator>Paradesi, Deivanayagam</creator><creator>Dinakaran, Kannaiyan</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-5992-2542</orcidid></search><sort><creationdate>20230415</creationdate><title>TiO2 nanoparticle enhanced high temperature proton conductivity in hyperbranched sulfonated polyarylene aliphatic ketones for proton exchange membrane fuel cell applications</title><author>Senthil, Theerthagiri ; Prabukanthan, Peethambaram ; Paradesi, Deivanayagam ; Dinakaran, Kannaiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1537-5061f4ffc3c843fc24db99243022a412565efbeed21e37a3ccb5e28ed5d9e47a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aliphatic compounds</topic><topic>fuel cell membrane</topic><topic>Fuel cells</topic><topic>High temperature</topic><topic>hyperbranched polymer</topic><topic>ion exchange capacity</topic><topic>Ketones</topic><topic>Materials science</topic><topic>Nanocomposites</topic><topic>nanocomposites membrane</topic><topic>Nanoparticles</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Particle size distribution</topic><topic>Polycondensation reactions</topic><topic>Polymers</topic><topic>proton conductivity</topic><topic>Proton exchange membrane fuel cells</topic><topic>Protons</topic><topic>Reagents</topic><topic>Sulfonic acid</topic><topic>Swelling ratio</topic><topic>Thermal stability</topic><topic>TiO2 nanoparticle</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Senthil, Theerthagiri</creatorcontrib><creatorcontrib>Prabukanthan, Peethambaram</creatorcontrib><creatorcontrib>Paradesi, Deivanayagam</creatorcontrib><creatorcontrib>Dinakaran, Kannaiyan</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Senthil, Theerthagiri</au><au>Prabukanthan, Peethambaram</au><au>Paradesi, Deivanayagam</au><au>Dinakaran, Kannaiyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TiO2 nanoparticle enhanced high temperature proton conductivity in hyperbranched sulfonated polyarylene aliphatic ketones for proton exchange membrane fuel cell applications</atitle><jtitle>Journal of applied polymer science</jtitle><date>2023-04-15</date><risdate>2023</risdate><volume>140</volume><issue>15</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>A new hyperbranched sulfonated poly(arylene aliphatic ketones) (HB‐SPAAK) has been synthesized and loaded with titania nanoparticles to obtain HB‐SPAAK/TiO2 nanocomposites for thermally stable proton‐conducting electrolyte membrane fuel cell (PEMFC) applications. The synthesis of HB‐SPAAKs was carried out through the polycondensation reaction of different aliphatic and aromatic acids with simultaneous loss of H2O, trifluromethane sulfonic acid used as catalyst. The long chain hyperbranched polymers and TiO2‐loaded nanocomposites were characterized by FT‐IR, 1H‐NMR, SEM and HR‐TEM. Proton conductivity (PC), swelling ratio, water uptake and oxidative stability. The SEM image of TiO2 NPs and HB‐SPAAKs/TiO2 nanocomposites membrane clearly showed the spherical of TiO2 and porous structure of HB‐SPAAKs with a pore diameter of 2–50 μm. TEM image reveals the uniform particle size distribution of TiO2 nanoparticles having a nanosize of 100 nm. TiO2 loaded polymer nanocomposites showed lower values of W/U and S/R when compared to the unmodified HB‐SPAAK, while 3% TiO2 loaded HB‐SPAAKs exhibited a threefold increment of proton conductivity of 1.439 × 10−2 S cm−1 compared to HB‐SPAAKs (0.41 x 10−2 S cm−1) and lower than that of Nafion 117 (0.1003 S cm−1 at 80°C). The 5% TiO2 NPs‐embedded with HB‐SPAAKs nanocomposites membranes also presented admirable oxidative stability with a degradation value of 13.8% during immersion in Fenton reagent for 8 h at 70°C.
Preparation of TiO2 dispersed hyper branched Polymer nanocomposites</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/app.53737</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5992-2542</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2023-04, Vol.140 (15), p.n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_journals_2784324919 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Aliphatic compounds fuel cell membrane Fuel cells High temperature hyperbranched polymer ion exchange capacity Ketones Materials science Nanocomposites nanocomposites membrane Nanoparticles NMR Nuclear magnetic resonance Particle size distribution Polycondensation reactions Polymers proton conductivity Proton exchange membrane fuel cells Protons Reagents Sulfonic acid Swelling ratio Thermal stability TiO2 nanoparticle Titanium dioxide |
title | TiO2 nanoparticle enhanced high temperature proton conductivity in hyperbranched sulfonated polyarylene aliphatic ketones for proton exchange membrane fuel cell applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A30%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TiO2%20nanoparticle%20enhanced%20high%20temperature%20proton%20conductivity%20in%20hyperbranched%20sulfonated%20polyarylene%20aliphatic%20ketones%20for%20proton%20exchange%20membrane%20fuel%20cell%20applications&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Senthil,%20Theerthagiri&rft.date=2023-04-15&rft.volume=140&rft.issue=15&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.53737&rft_dat=%3Cproquest_wiley%3E2784324919%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784324919&rft_id=info:pmid/&rfr_iscdi=true |