Scapegoat Generation for Privacy Protection from Deepfake
To protect privacy and prevent malicious use of deepfake, current studies propose methods that interfere with the generation process, such as detection and destruction approaches. However, these methods suffer from sub-optimal generalization performance to unseen models and add undesirable noise to...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-03 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kato, Gido Fukuhara, Yoshihiro Isogawa, Mariko Tsunashima, Hideki Kataoka, Hirokatsu Morishima, Shigeo |
description | To protect privacy and prevent malicious use of deepfake, current studies propose methods that interfere with the generation process, such as detection and destruction approaches. However, these methods suffer from sub-optimal generalization performance to unseen models and add undesirable noise to the original image. To address these problems, we propose a new problem formulation for deepfake prevention: generating a ``scapegoat image'' by modifying the style of the original input in a way that is recognizable as an avatar by the user, but impossible to reconstruct the real face. Even in the case of malicious deepfake, the privacy of the users is still protected. To achieve this, we introduce an optimization-based editing method that utilizes GAN inversion to discourage deepfake models from generating similar scapegoats. We validate the effectiveness of our proposed method through quantitative and user studies. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2784121007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2784121007</sourcerecordid><originalsourceid>FETCH-proquest_journals_27841210073</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLgupC-tqWu_S0H3JYQXadW8mKSCt7egB3A1MDMTloGUZdFUADOWx9gLIWCloK5lxtZnoz1eSSd-QIdBp44ctxT4KXQvbd4jKaH56kAPvkX0Vt9wwaZW3yPmP87Zcr-7bI6FD_QcMKa2pyG4MbWgmqqEUggl_7s-jVQ2dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784121007</pqid></control><display><type>article</type><title>Scapegoat Generation for Privacy Protection from Deepfake</title><source>Free E- Journals</source><creator>Kato, Gido ; Fukuhara, Yoshihiro ; Isogawa, Mariko ; Tsunashima, Hideki ; Kataoka, Hirokatsu ; Morishima, Shigeo</creator><creatorcontrib>Kato, Gido ; Fukuhara, Yoshihiro ; Isogawa, Mariko ; Tsunashima, Hideki ; Kataoka, Hirokatsu ; Morishima, Shigeo</creatorcontrib><description>To protect privacy and prevent malicious use of deepfake, current studies propose methods that interfere with the generation process, such as detection and destruction approaches. However, these methods suffer from sub-optimal generalization performance to unseen models and add undesirable noise to the original image. To address these problems, we propose a new problem formulation for deepfake prevention: generating a ``scapegoat image'' by modifying the style of the original input in a way that is recognizable as an avatar by the user, but impossible to reconstruct the real face. Even in the case of malicious deepfake, the privacy of the users is still protected. To achieve this, we introduce an optimization-based editing method that utilizes GAN inversion to discourage deepfake models from generating similar scapegoats. We validate the effectiveness of our proposed method through quantitative and user studies.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Avatars ; Deception ; Optimization ; Privacy</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kato, Gido</creatorcontrib><creatorcontrib>Fukuhara, Yoshihiro</creatorcontrib><creatorcontrib>Isogawa, Mariko</creatorcontrib><creatorcontrib>Tsunashima, Hideki</creatorcontrib><creatorcontrib>Kataoka, Hirokatsu</creatorcontrib><creatorcontrib>Morishima, Shigeo</creatorcontrib><title>Scapegoat Generation for Privacy Protection from Deepfake</title><title>arXiv.org</title><description>To protect privacy and prevent malicious use of deepfake, current studies propose methods that interfere with the generation process, such as detection and destruction approaches. However, these methods suffer from sub-optimal generalization performance to unseen models and add undesirable noise to the original image. To address these problems, we propose a new problem formulation for deepfake prevention: generating a ``scapegoat image'' by modifying the style of the original input in a way that is recognizable as an avatar by the user, but impossible to reconstruct the real face. Even in the case of malicious deepfake, the privacy of the users is still protected. To achieve this, we introduce an optimization-based editing method that utilizes GAN inversion to discourage deepfake models from generating similar scapegoats. We validate the effectiveness of our proposed method through quantitative and user studies.</description><subject>Avatars</subject><subject>Deception</subject><subject>Optimization</subject><subject>Privacy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLgupC-tqWu_S0H3JYQXadW8mKSCt7egB3A1MDMTloGUZdFUADOWx9gLIWCloK5lxtZnoz1eSSd-QIdBp44ctxT4KXQvbd4jKaH56kAPvkX0Vt9wwaZW3yPmP87Zcr-7bI6FD_QcMKa2pyG4MbWgmqqEUggl_7s-jVQ2dg</recordid><startdate>20230306</startdate><enddate>20230306</enddate><creator>Kato, Gido</creator><creator>Fukuhara, Yoshihiro</creator><creator>Isogawa, Mariko</creator><creator>Tsunashima, Hideki</creator><creator>Kataoka, Hirokatsu</creator><creator>Morishima, Shigeo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230306</creationdate><title>Scapegoat Generation for Privacy Protection from Deepfake</title><author>Kato, Gido ; Fukuhara, Yoshihiro ; Isogawa, Mariko ; Tsunashima, Hideki ; Kataoka, Hirokatsu ; Morishima, Shigeo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27841210073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Avatars</topic><topic>Deception</topic><topic>Optimization</topic><topic>Privacy</topic><toplevel>online_resources</toplevel><creatorcontrib>Kato, Gido</creatorcontrib><creatorcontrib>Fukuhara, Yoshihiro</creatorcontrib><creatorcontrib>Isogawa, Mariko</creatorcontrib><creatorcontrib>Tsunashima, Hideki</creatorcontrib><creatorcontrib>Kataoka, Hirokatsu</creatorcontrib><creatorcontrib>Morishima, Shigeo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kato, Gido</au><au>Fukuhara, Yoshihiro</au><au>Isogawa, Mariko</au><au>Tsunashima, Hideki</au><au>Kataoka, Hirokatsu</au><au>Morishima, Shigeo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Scapegoat Generation for Privacy Protection from Deepfake</atitle><jtitle>arXiv.org</jtitle><date>2023-03-06</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>To protect privacy and prevent malicious use of deepfake, current studies propose methods that interfere with the generation process, such as detection and destruction approaches. However, these methods suffer from sub-optimal generalization performance to unseen models and add undesirable noise to the original image. To address these problems, we propose a new problem formulation for deepfake prevention: generating a ``scapegoat image'' by modifying the style of the original input in a way that is recognizable as an avatar by the user, but impossible to reconstruct the real face. Even in the case of malicious deepfake, the privacy of the users is still protected. To achieve this, we introduce an optimization-based editing method that utilizes GAN inversion to discourage deepfake models from generating similar scapegoats. We validate the effectiveness of our proposed method through quantitative and user studies.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2784121007 |
source | Free E- Journals |
subjects | Avatars Deception Optimization Privacy |
title | Scapegoat Generation for Privacy Protection from Deepfake |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Scapegoat%20Generation%20for%20Privacy%20Protection%20from%20Deepfake&rft.jtitle=arXiv.org&rft.au=Kato,%20Gido&rft.date=2023-03-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2784121007%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784121007&rft_id=info:pmid/&rfr_iscdi=true |