Scapegoat Generation for Privacy Protection from Deepfake

To protect privacy and prevent malicious use of deepfake, current studies propose methods that interfere with the generation process, such as detection and destruction approaches. However, these methods suffer from sub-optimal generalization performance to unseen models and add undesirable noise to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
Hauptverfasser: Kato, Gido, Fukuhara, Yoshihiro, Isogawa, Mariko, Tsunashima, Hideki, Kataoka, Hirokatsu, Morishima, Shigeo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kato, Gido
Fukuhara, Yoshihiro
Isogawa, Mariko
Tsunashima, Hideki
Kataoka, Hirokatsu
Morishima, Shigeo
description To protect privacy and prevent malicious use of deepfake, current studies propose methods that interfere with the generation process, such as detection and destruction approaches. However, these methods suffer from sub-optimal generalization performance to unseen models and add undesirable noise to the original image. To address these problems, we propose a new problem formulation for deepfake prevention: generating a ``scapegoat image'' by modifying the style of the original input in a way that is recognizable as an avatar by the user, but impossible to reconstruct the real face. Even in the case of malicious deepfake, the privacy of the users is still protected. To achieve this, we introduce an optimization-based editing method that utilizes GAN inversion to discourage deepfake models from generating similar scapegoats. We validate the effectiveness of our proposed method through quantitative and user studies.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2784121007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2784121007</sourcerecordid><originalsourceid>FETCH-proquest_journals_27841210073</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLgupC-tqWu_S0H3JYQXadW8mKSCt7egB3A1MDMTloGUZdFUADOWx9gLIWCloK5lxtZnoz1eSSd-QIdBp44ctxT4KXQvbd4jKaH56kAPvkX0Vt9wwaZW3yPmP87Zcr-7bI6FD_QcMKa2pyG4MbWgmqqEUggl_7s-jVQ2dg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2784121007</pqid></control><display><type>article</type><title>Scapegoat Generation for Privacy Protection from Deepfake</title><source>Free E- Journals</source><creator>Kato, Gido ; Fukuhara, Yoshihiro ; Isogawa, Mariko ; Tsunashima, Hideki ; Kataoka, Hirokatsu ; Morishima, Shigeo</creator><creatorcontrib>Kato, Gido ; Fukuhara, Yoshihiro ; Isogawa, Mariko ; Tsunashima, Hideki ; Kataoka, Hirokatsu ; Morishima, Shigeo</creatorcontrib><description>To protect privacy and prevent malicious use of deepfake, current studies propose methods that interfere with the generation process, such as detection and destruction approaches. However, these methods suffer from sub-optimal generalization performance to unseen models and add undesirable noise to the original image. To address these problems, we propose a new problem formulation for deepfake prevention: generating a ``scapegoat image'' by modifying the style of the original input in a way that is recognizable as an avatar by the user, but impossible to reconstruct the real face. Even in the case of malicious deepfake, the privacy of the users is still protected. To achieve this, we introduce an optimization-based editing method that utilizes GAN inversion to discourage deepfake models from generating similar scapegoats. We validate the effectiveness of our proposed method through quantitative and user studies.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Avatars ; Deception ; Optimization ; Privacy</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Kato, Gido</creatorcontrib><creatorcontrib>Fukuhara, Yoshihiro</creatorcontrib><creatorcontrib>Isogawa, Mariko</creatorcontrib><creatorcontrib>Tsunashima, Hideki</creatorcontrib><creatorcontrib>Kataoka, Hirokatsu</creatorcontrib><creatorcontrib>Morishima, Shigeo</creatorcontrib><title>Scapegoat Generation for Privacy Protection from Deepfake</title><title>arXiv.org</title><description>To protect privacy and prevent malicious use of deepfake, current studies propose methods that interfere with the generation process, such as detection and destruction approaches. However, these methods suffer from sub-optimal generalization performance to unseen models and add undesirable noise to the original image. To address these problems, we propose a new problem formulation for deepfake prevention: generating a ``scapegoat image'' by modifying the style of the original input in a way that is recognizable as an avatar by the user, but impossible to reconstruct the real face. Even in the case of malicious deepfake, the privacy of the users is still protected. To achieve this, we introduce an optimization-based editing method that utilizes GAN inversion to discourage deepfake models from generating similar scapegoats. We validate the effectiveness of our proposed method through quantitative and user studies.</description><subject>Avatars</subject><subject>Deception</subject><subject>Optimization</subject><subject>Privacy</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLgupC-tqWu_S0H3JYQXadW8mKSCt7egB3A1MDMTloGUZdFUADOWx9gLIWCloK5lxtZnoz1eSSd-QIdBp44ctxT4KXQvbd4jKaH56kAPvkX0Vt9wwaZW3yPmP87Zcr-7bI6FD_QcMKa2pyG4MbWgmqqEUggl_7s-jVQ2dg</recordid><startdate>20230306</startdate><enddate>20230306</enddate><creator>Kato, Gido</creator><creator>Fukuhara, Yoshihiro</creator><creator>Isogawa, Mariko</creator><creator>Tsunashima, Hideki</creator><creator>Kataoka, Hirokatsu</creator><creator>Morishima, Shigeo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230306</creationdate><title>Scapegoat Generation for Privacy Protection from Deepfake</title><author>Kato, Gido ; Fukuhara, Yoshihiro ; Isogawa, Mariko ; Tsunashima, Hideki ; Kataoka, Hirokatsu ; Morishima, Shigeo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27841210073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Avatars</topic><topic>Deception</topic><topic>Optimization</topic><topic>Privacy</topic><toplevel>online_resources</toplevel><creatorcontrib>Kato, Gido</creatorcontrib><creatorcontrib>Fukuhara, Yoshihiro</creatorcontrib><creatorcontrib>Isogawa, Mariko</creatorcontrib><creatorcontrib>Tsunashima, Hideki</creatorcontrib><creatorcontrib>Kataoka, Hirokatsu</creatorcontrib><creatorcontrib>Morishima, Shigeo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kato, Gido</au><au>Fukuhara, Yoshihiro</au><au>Isogawa, Mariko</au><au>Tsunashima, Hideki</au><au>Kataoka, Hirokatsu</au><au>Morishima, Shigeo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Scapegoat Generation for Privacy Protection from Deepfake</atitle><jtitle>arXiv.org</jtitle><date>2023-03-06</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>To protect privacy and prevent malicious use of deepfake, current studies propose methods that interfere with the generation process, such as detection and destruction approaches. However, these methods suffer from sub-optimal generalization performance to unseen models and add undesirable noise to the original image. To address these problems, we propose a new problem formulation for deepfake prevention: generating a ``scapegoat image'' by modifying the style of the original input in a way that is recognizable as an avatar by the user, but impossible to reconstruct the real face. Even in the case of malicious deepfake, the privacy of the users is still protected. To achieve this, we introduce an optimization-based editing method that utilizes GAN inversion to discourage deepfake models from generating similar scapegoats. We validate the effectiveness of our proposed method through quantitative and user studies.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2784121007
source Free E- Journals
subjects Avatars
Deception
Optimization
Privacy
title Scapegoat Generation for Privacy Protection from Deepfake
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A08%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Scapegoat%20Generation%20for%20Privacy%20Protection%20from%20Deepfake&rft.jtitle=arXiv.org&rft.au=Kato,%20Gido&rft.date=2023-03-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2784121007%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2784121007&rft_id=info:pmid/&rfr_iscdi=true