(Bi1/6Na1/6Ba1/6Sr1/6Ca1/6Pb1/6)TiO3-based high-entropy dielectric ceramics with ultrahigh recoverable energy density and high energy storage efficiency
Inspired by the development of high-power/pulsed-power techniques, dielectric capacitors with enormous power densities as well as ultrafast charge/discharge speeds have captured increasing attention and extensive research, particularly ceramic capacitors. Nevertheless, the limited recoverable energy...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-03, Vol.11 (10), p.4937-4945 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4945 |
---|---|
container_issue | 10 |
container_start_page | 4937 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 11 |
creator | Wang, Hao Zhang, Ji Jiang, Shunshun Wang, Jiajia Wang, Jing Wang, Yaojin |
description | Inspired by the development of high-power/pulsed-power techniques, dielectric capacitors with enormous power densities as well as ultrafast charge/discharge speeds have captured increasing attention and extensive research, particularly ceramic capacitors. Nevertheless, the limited recoverable energy density (Wrec) and/or low energy storage efficiency (η) of ceramic capacitors delay their applications in capacitive energy storage. Herein, single phase high-entropy (Bi1/6Na1/6Ba1/6Sr1/6Ca1/6Pb1/6)Ti1−xZrxO3 dielectric ceramics are designed and investigated. The enhanced dielectric relaxation behavior and fine grain size gave rise to decreased remnant polarization (Pr) and promoted electric breakdown strength (Eb). The special electronic structure of Pb2+ and Bi3+ favors retaining relatively large maximum polarization (Pmax). Accordingly, ultrahigh Wrec of 8.8 J cm−3, high η of 92.5%, and exceptional thermal reliability (Wrec = 4.5 J cm−3 ± 6.5% in the range of 25–180 °C) are synchronously achieved in the optimum composition of x = 0.12, providing a feasible strategy to explore high-performance dielectric ceramics for applications in electrostatic energy storage. |
doi_str_mv | 10.1039/d2ta10098c |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2783584994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2783584994</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-51d55986a00d7834016e7f31f47be4c69b6f21e4f7536716734d073bfbd1f79a3</originalsourceid><addsrcrecordid>eNo9jd1KAzEQhYMoWGpvfIKAN3qxNtlk83Npi38gVrBel2x20qasuzVJlb6Jj2tK1bn45jBz5gxC55RcU8L0uCmToYRoZY_QoCQVKSTX4vhfK3WKRjGuSS5FiNB6gL4vJ56OxbPJmOzxGjKme_VSZ1zN_YwVtYnQ4JVfrgroUug3O9x4aMGm4C22EMy7txF_-bTC2zYFs7fiALb_zLu6BQwdhGW-gi76tMOmO8T9zWPqg1lmm3Peeujs7gydONNGGP32IXq7u51PH4qn2f3j9Oap2FDFUlHRpqq0EoaQRirGCRUgHaOOyxq4FboWrqTAnayYkFRIxhsiWe3qhjqpDRuii0PuJvQfW4hpse63ocsvF2UOrBTXmrMfJbFoLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2783584994</pqid></control><display><type>article</type><title>(Bi1/6Na1/6Ba1/6Sr1/6Ca1/6Pb1/6)TiO3-based high-entropy dielectric ceramics with ultrahigh recoverable energy density and high energy storage efficiency</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Wang, Hao ; Zhang, Ji ; Jiang, Shunshun ; Wang, Jiajia ; Wang, Jing ; Wang, Yaojin</creator><creatorcontrib>Wang, Hao ; Zhang, Ji ; Jiang, Shunshun ; Wang, Jiajia ; Wang, Jing ; Wang, Yaojin</creatorcontrib><description>Inspired by the development of high-power/pulsed-power techniques, dielectric capacitors with enormous power densities as well as ultrafast charge/discharge speeds have captured increasing attention and extensive research, particularly ceramic capacitors. Nevertheless, the limited recoverable energy density (Wrec) and/or low energy storage efficiency (η) of ceramic capacitors delay their applications in capacitive energy storage. Herein, single phase high-entropy (Bi1/6Na1/6Ba1/6Sr1/6Ca1/6Pb1/6)Ti1−xZrxO3 dielectric ceramics are designed and investigated. The enhanced dielectric relaxation behavior and fine grain size gave rise to decreased remnant polarization (Pr) and promoted electric breakdown strength (Eb). The special electronic structure of Pb2+ and Bi3+ favors retaining relatively large maximum polarization (Pmax). Accordingly, ultrahigh Wrec of 8.8 J cm−3, high η of 92.5%, and exceptional thermal reliability (Wrec = 4.5 J cm−3 ± 6.5% in the range of 25–180 °C) are synchronously achieved in the optimum composition of x = 0.12, providing a feasible strategy to explore high-performance dielectric ceramics for applications in electrostatic energy storage.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d2ta10098c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Capacitors ; Ceramics ; Dielectric relaxation ; Electronic structure ; Energy storage ; Entropy ; Grain size ; Lead ; Polarization</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-03, Vol.11 (10), p.4937-4945</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Zhang, Ji</creatorcontrib><creatorcontrib>Jiang, Shunshun</creatorcontrib><creatorcontrib>Wang, Jiajia</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Wang, Yaojin</creatorcontrib><title>(Bi1/6Na1/6Ba1/6Sr1/6Ca1/6Pb1/6)TiO3-based high-entropy dielectric ceramics with ultrahigh recoverable energy density and high energy storage efficiency</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Inspired by the development of high-power/pulsed-power techniques, dielectric capacitors with enormous power densities as well as ultrafast charge/discharge speeds have captured increasing attention and extensive research, particularly ceramic capacitors. Nevertheless, the limited recoverable energy density (Wrec) and/or low energy storage efficiency (η) of ceramic capacitors delay their applications in capacitive energy storage. Herein, single phase high-entropy (Bi1/6Na1/6Ba1/6Sr1/6Ca1/6Pb1/6)Ti1−xZrxO3 dielectric ceramics are designed and investigated. The enhanced dielectric relaxation behavior and fine grain size gave rise to decreased remnant polarization (Pr) and promoted electric breakdown strength (Eb). The special electronic structure of Pb2+ and Bi3+ favors retaining relatively large maximum polarization (Pmax). Accordingly, ultrahigh Wrec of 8.8 J cm−3, high η of 92.5%, and exceptional thermal reliability (Wrec = 4.5 J cm−3 ± 6.5% in the range of 25–180 °C) are synchronously achieved in the optimum composition of x = 0.12, providing a feasible strategy to explore high-performance dielectric ceramics for applications in electrostatic energy storage.</description><subject>Capacitors</subject><subject>Ceramics</subject><subject>Dielectric relaxation</subject><subject>Electronic structure</subject><subject>Energy storage</subject><subject>Entropy</subject><subject>Grain size</subject><subject>Lead</subject><subject>Polarization</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9jd1KAzEQhYMoWGpvfIKAN3qxNtlk83Npi38gVrBel2x20qasuzVJlb6Jj2tK1bn45jBz5gxC55RcU8L0uCmToYRoZY_QoCQVKSTX4vhfK3WKRjGuSS5FiNB6gL4vJ56OxbPJmOzxGjKme_VSZ1zN_YwVtYnQ4JVfrgroUug3O9x4aMGm4C22EMy7txF_-bTC2zYFs7fiALb_zLu6BQwdhGW-gi76tMOmO8T9zWPqg1lmm3Peeujs7gydONNGGP32IXq7u51PH4qn2f3j9Oap2FDFUlHRpqq0EoaQRirGCRUgHaOOyxq4FboWrqTAnayYkFRIxhsiWe3qhjqpDRuii0PuJvQfW4hpse63ocsvF2UOrBTXmrMfJbFoLQ</recordid><startdate>20230307</startdate><enddate>20230307</enddate><creator>Wang, Hao</creator><creator>Zhang, Ji</creator><creator>Jiang, Shunshun</creator><creator>Wang, Jiajia</creator><creator>Wang, Jing</creator><creator>Wang, Yaojin</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20230307</creationdate><title>(Bi1/6Na1/6Ba1/6Sr1/6Ca1/6Pb1/6)TiO3-based high-entropy dielectric ceramics with ultrahigh recoverable energy density and high energy storage efficiency</title><author>Wang, Hao ; Zhang, Ji ; Jiang, Shunshun ; Wang, Jiajia ; Wang, Jing ; Wang, Yaojin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-51d55986a00d7834016e7f31f47be4c69b6f21e4f7536716734d073bfbd1f79a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Capacitors</topic><topic>Ceramics</topic><topic>Dielectric relaxation</topic><topic>Electronic structure</topic><topic>Energy storage</topic><topic>Entropy</topic><topic>Grain size</topic><topic>Lead</topic><topic>Polarization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Hao</creatorcontrib><creatorcontrib>Zhang, Ji</creatorcontrib><creatorcontrib>Jiang, Shunshun</creatorcontrib><creatorcontrib>Wang, Jiajia</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Wang, Yaojin</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Hao</au><au>Zhang, Ji</au><au>Jiang, Shunshun</au><au>Wang, Jiajia</au><au>Wang, Jing</au><au>Wang, Yaojin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>(Bi1/6Na1/6Ba1/6Sr1/6Ca1/6Pb1/6)TiO3-based high-entropy dielectric ceramics with ultrahigh recoverable energy density and high energy storage efficiency</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-03-07</date><risdate>2023</risdate><volume>11</volume><issue>10</issue><spage>4937</spage><epage>4945</epage><pages>4937-4945</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Inspired by the development of high-power/pulsed-power techniques, dielectric capacitors with enormous power densities as well as ultrafast charge/discharge speeds have captured increasing attention and extensive research, particularly ceramic capacitors. Nevertheless, the limited recoverable energy density (Wrec) and/or low energy storage efficiency (η) of ceramic capacitors delay their applications in capacitive energy storage. Herein, single phase high-entropy (Bi1/6Na1/6Ba1/6Sr1/6Ca1/6Pb1/6)Ti1−xZrxO3 dielectric ceramics are designed and investigated. The enhanced dielectric relaxation behavior and fine grain size gave rise to decreased remnant polarization (Pr) and promoted electric breakdown strength (Eb). The special electronic structure of Pb2+ and Bi3+ favors retaining relatively large maximum polarization (Pmax). Accordingly, ultrahigh Wrec of 8.8 J cm−3, high η of 92.5%, and exceptional thermal reliability (Wrec = 4.5 J cm−3 ± 6.5% in the range of 25–180 °C) are synchronously achieved in the optimum composition of x = 0.12, providing a feasible strategy to explore high-performance dielectric ceramics for applications in electrostatic energy storage.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ta10098c</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2023-03, Vol.11 (10), p.4937-4945 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2783584994 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Capacitors Ceramics Dielectric relaxation Electronic structure Energy storage Entropy Grain size Lead Polarization |
title | (Bi1/6Na1/6Ba1/6Sr1/6Ca1/6Pb1/6)TiO3-based high-entropy dielectric ceramics with ultrahigh recoverable energy density and high energy storage efficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A30%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=(Bi1/6Na1/6Ba1/6Sr1/6Ca1/6Pb1/6)TiO3-based%20high-entropy%20dielectric%20ceramics%20with%20ultrahigh%20recoverable%20energy%20density%20and%20high%20energy%20storage%20efficiency&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Wang,%20Hao&rft.date=2023-03-07&rft.volume=11&rft.issue=10&rft.spage=4937&rft.epage=4945&rft.pages=4937-4945&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d2ta10098c&rft_dat=%3Cproquest%3E2783584994%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2783584994&rft_id=info:pmid/&rfr_iscdi=true |