Design of an enhanced fractional order PID controller for a class of second-order system

PurposeThis paper aims to design a modified fractional order proportional integral derivative (PID) (FO[PI]λDµ) controller based on the principle of fractional calculus and investigate its performance for a class of a second-order plant model under different operating conditions. The effectiveness o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compel 2021-08, Vol.40 (3), p.579-592
Hauptverfasser: Kanagaraj, N., Jha, Vishwa Nath
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 592
container_issue 3
container_start_page 579
container_title Compel
container_volume 40
creator Kanagaraj, N.
Jha, Vishwa Nath
description PurposeThis paper aims to design a modified fractional order proportional integral derivative (PID) (FO[PI]λDµ) controller based on the principle of fractional calculus and investigate its performance for a class of a second-order plant model under different operating conditions. The effectiveness of the proposed controller is compared with the classical controllers.Design/methodology/approachThe fractional factor related to the integral term of the standard FO[PI]λDµ controller is applied as a common fractional factor term for the proportional plus integral coefficients in the proposed controller structure. The controller design is developed using the regular closed-loop system design specifications such as gain crossover frequency, phase margin, robustness to gain change and two more specifications, namely, noise reduction and disturbance elimination functions.FindingsThe study results of the designed controller using matrix laboratory software are analyzed and compared with an integer order PID and a classical FOPIλDµ controller, the proposed FO[PI]λDµ controller exhibit a high degree of performance in terms of settling time, fast response and no overshoot.Originality/valueThis paper proposes a methodology for the FO[PI]λDµ controller design for a second-order plant model using the closed-loop system design specifications. The effectiveness of the proposed control scheme is demonstrated under different operating conditions such as external load disturbances and input parameter change.
doi_str_mv 10.1108/COMPEL-08-2020-0267
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2783571319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2783571319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c207t-66a56221181a7329f208f64bccaa2e83cb7d7e83c1161b85199f983a4c19caef3</originalsourceid><addsrcrecordid>eNotkEFPwzAMhSMEEmPwC7hE4hywkzZNjmgbMGloO4DELcrSBDZ1zUi6w_49rYovz5afn6yPkHuER0RQT7P1-2axYqAYBw4MuKwuyIRDWbBSgrwkExCCM5SFviY3Oe-hL13ChHzNfd59tzQGalvq2x_bOl_TkKzrdrG1DY2p9olulnPqYtul2DT9GGKilrrG5jycZt_vajZa8zl3_nBLroJtsr_71yn5fFl8zN7Yav26nD2vmONQdUxKW0rOERXaSnAdOKggi61z1nKvhNtWdTUoosStKlHroJWwhUPtrA9iSh7G3GOKvyefO7OPp9Q_ng2vlCgrFKh7lxhdLsWckw_mmHYHm84GwQwIzYjQ9N2A0AwIxR-FgGQK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2783571319</pqid></control><display><type>article</type><title>Design of an enhanced fractional order PID controller for a class of second-order system</title><source>Emerald Journals</source><creator>Kanagaraj, N. ; Jha, Vishwa Nath</creator><creatorcontrib>Kanagaraj, N. ; Jha, Vishwa Nath</creatorcontrib><description>PurposeThis paper aims to design a modified fractional order proportional integral derivative (PID) (FO[PI]λDµ) controller based on the principle of fractional calculus and investigate its performance for a class of a second-order plant model under different operating conditions. The effectiveness of the proposed controller is compared with the classical controllers.Design/methodology/approachThe fractional factor related to the integral term of the standard FO[PI]λDµ controller is applied as a common fractional factor term for the proportional plus integral coefficients in the proposed controller structure. The controller design is developed using the regular closed-loop system design specifications such as gain crossover frequency, phase margin, robustness to gain change and two more specifications, namely, noise reduction and disturbance elimination functions.FindingsThe study results of the designed controller using matrix laboratory software are analyzed and compared with an integer order PID and a classical FOPIλDµ controller, the proposed FO[PI]λDµ controller exhibit a high degree of performance in terms of settling time, fast response and no overshoot.Originality/valueThis paper proposes a methodology for the FO[PI]λDµ controller design for a second-order plant model using the closed-loop system design specifications. The effectiveness of the proposed control scheme is demonstrated under different operating conditions such as external load disturbances and input parameter change.</description><identifier>ISSN: 0332-1649</identifier><identifier>EISSN: 2054-5606</identifier><identifier>DOI: 10.1108/COMPEL-08-2020-0267</identifier><language>eng</language><publisher>Bradford: Emerald Group Publishing Limited</publisher><subject>Calculus ; Closed loops ; Control systems design ; Controllers ; Design specifications ; Design techniques ; Effectiveness ; Feedback control ; Fractional calculus ; Laplace transforms ; Proportional integral derivative ; Specifications</subject><ispartof>Compel, 2021-08, Vol.40 (3), p.579-592</ispartof><rights>Emerald Publishing Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c207t-66a56221181a7329f208f64bccaa2e83cb7d7e83c1161b85199f983a4c19caef3</citedby><cites>FETCH-LOGICAL-c207t-66a56221181a7329f208f64bccaa2e83cb7d7e83c1161b85199f983a4c19caef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,961,27901,27902</link.rule.ids></links><search><creatorcontrib>Kanagaraj, N.</creatorcontrib><creatorcontrib>Jha, Vishwa Nath</creatorcontrib><title>Design of an enhanced fractional order PID controller for a class of second-order system</title><title>Compel</title><description>PurposeThis paper aims to design a modified fractional order proportional integral derivative (PID) (FO[PI]λDµ) controller based on the principle of fractional calculus and investigate its performance for a class of a second-order plant model under different operating conditions. The effectiveness of the proposed controller is compared with the classical controllers.Design/methodology/approachThe fractional factor related to the integral term of the standard FO[PI]λDµ controller is applied as a common fractional factor term for the proportional plus integral coefficients in the proposed controller structure. The controller design is developed using the regular closed-loop system design specifications such as gain crossover frequency, phase margin, robustness to gain change and two more specifications, namely, noise reduction and disturbance elimination functions.FindingsThe study results of the designed controller using matrix laboratory software are analyzed and compared with an integer order PID and a classical FOPIλDµ controller, the proposed FO[PI]λDµ controller exhibit a high degree of performance in terms of settling time, fast response and no overshoot.Originality/valueThis paper proposes a methodology for the FO[PI]λDµ controller design for a second-order plant model using the closed-loop system design specifications. The effectiveness of the proposed control scheme is demonstrated under different operating conditions such as external load disturbances and input parameter change.</description><subject>Calculus</subject><subject>Closed loops</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Design specifications</subject><subject>Design techniques</subject><subject>Effectiveness</subject><subject>Feedback control</subject><subject>Fractional calculus</subject><subject>Laplace transforms</subject><subject>Proportional integral derivative</subject><subject>Specifications</subject><issn>0332-1649</issn><issn>2054-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkEFPwzAMhSMEEmPwC7hE4hywkzZNjmgbMGloO4DELcrSBDZ1zUi6w_49rYovz5afn6yPkHuER0RQT7P1-2axYqAYBw4MuKwuyIRDWbBSgrwkExCCM5SFviY3Oe-hL13ChHzNfd59tzQGalvq2x_bOl_TkKzrdrG1DY2p9olulnPqYtul2DT9GGKilrrG5jycZt_vajZa8zl3_nBLroJtsr_71yn5fFl8zN7Yav26nD2vmONQdUxKW0rOERXaSnAdOKggi61z1nKvhNtWdTUoosStKlHroJWwhUPtrA9iSh7G3GOKvyefO7OPp9Q_ng2vlCgrFKh7lxhdLsWckw_mmHYHm84GwQwIzYjQ9N2A0AwIxR-FgGQK</recordid><startdate>20210820</startdate><enddate>20210820</enddate><creator>Kanagaraj, N.</creator><creator>Jha, Vishwa Nath</creator><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20210820</creationdate><title>Design of an enhanced fractional order PID controller for a class of second-order system</title><author>Kanagaraj, N. ; Jha, Vishwa Nath</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c207t-66a56221181a7329f208f64bccaa2e83cb7d7e83c1161b85199f983a4c19caef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Calculus</topic><topic>Closed loops</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Design specifications</topic><topic>Design techniques</topic><topic>Effectiveness</topic><topic>Feedback control</topic><topic>Fractional calculus</topic><topic>Laplace transforms</topic><topic>Proportional integral derivative</topic><topic>Specifications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanagaraj, N.</creatorcontrib><creatorcontrib>Jha, Vishwa Nath</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Compel</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanagaraj, N.</au><au>Jha, Vishwa Nath</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of an enhanced fractional order PID controller for a class of second-order system</atitle><jtitle>Compel</jtitle><date>2021-08-20</date><risdate>2021</risdate><volume>40</volume><issue>3</issue><spage>579</spage><epage>592</epage><pages>579-592</pages><issn>0332-1649</issn><eissn>2054-5606</eissn><abstract>PurposeThis paper aims to design a modified fractional order proportional integral derivative (PID) (FO[PI]λDµ) controller based on the principle of fractional calculus and investigate its performance for a class of a second-order plant model under different operating conditions. The effectiveness of the proposed controller is compared with the classical controllers.Design/methodology/approachThe fractional factor related to the integral term of the standard FO[PI]λDµ controller is applied as a common fractional factor term for the proportional plus integral coefficients in the proposed controller structure. The controller design is developed using the regular closed-loop system design specifications such as gain crossover frequency, phase margin, robustness to gain change and two more specifications, namely, noise reduction and disturbance elimination functions.FindingsThe study results of the designed controller using matrix laboratory software are analyzed and compared with an integer order PID and a classical FOPIλDµ controller, the proposed FO[PI]λDµ controller exhibit a high degree of performance in terms of settling time, fast response and no overshoot.Originality/valueThis paper proposes a methodology for the FO[PI]λDµ controller design for a second-order plant model using the closed-loop system design specifications. The effectiveness of the proposed control scheme is demonstrated under different operating conditions such as external load disturbances and input parameter change.</abstract><cop>Bradford</cop><pub>Emerald Group Publishing Limited</pub><doi>10.1108/COMPEL-08-2020-0267</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0332-1649
ispartof Compel, 2021-08, Vol.40 (3), p.579-592
issn 0332-1649
2054-5606
language eng
recordid cdi_proquest_journals_2783571319
source Emerald Journals
subjects Calculus
Closed loops
Control systems design
Controllers
Design specifications
Design techniques
Effectiveness
Feedback control
Fractional calculus
Laplace transforms
Proportional integral derivative
Specifications
title Design of an enhanced fractional order PID controller for a class of second-order system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T03%3A23%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20an%20enhanced%20fractional%20order%20PID%20controller%20for%20a%20class%20of%20second-order%20system&rft.jtitle=Compel&rft.au=Kanagaraj,%20N.&rft.date=2021-08-20&rft.volume=40&rft.issue=3&rft.spage=579&rft.epage=592&rft.pages=579-592&rft.issn=0332-1649&rft.eissn=2054-5606&rft_id=info:doi/10.1108/COMPEL-08-2020-0267&rft_dat=%3Cproquest_cross%3E2783571319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2783571319&rft_id=info:pmid/&rfr_iscdi=true