The electronic structure of β-TeO2 as wide bandgap p-type oxide semiconductor

Wide bandgap oxide semiconductors have gained significant attention in the fields from flat panel displays to solar cells, but their uses have been limited by the lack of high mobility p-type oxide semiconductors. Recently, β-phase TeO2 has been identified as a promising p-type oxide semiconductor w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2023-03, Vol.122 (10)
Hauptverfasser: Shi, Jueli, Sheng, Ziqian, Zhu, Ling, Xu, Xiangyu, Gao, Yun, Tang, Dingliang, Zhang, Kelvin H. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Applied physics letters
container_volume 122
creator Shi, Jueli
Sheng, Ziqian
Zhu, Ling
Xu, Xiangyu
Gao, Yun
Tang, Dingliang
Zhang, Kelvin H. L.
description Wide bandgap oxide semiconductors have gained significant attention in the fields from flat panel displays to solar cells, but their uses have been limited by the lack of high mobility p-type oxide semiconductors. Recently, β-phase TeO2 has been identified as a promising p-type oxide semiconductor with exceptional device performance. In this Letter, we report on the electronic structure of β-TeO2 studied by a combination of high-resolution x-ray spectroscopy and hybrid density functional theory calculations. The bulk bandgap of β-TeO2 is determined to be 3.7 eV. Direct comparisons between experimental and computational results demonstrate that the top of a valence band (VB) of β-TeO2 is composed of the hybridized Te 5s, Te 5p, and O 2p states, whereas a conduction band (CB) is dominated by unoccupied Te 5p states. The hybridization between spatially dispersive Te 5s2 states and O 2p orbitals helps us to alleviate the strong localization in the VB, leading to small hole effective mass and high hole mobility in β-TeO2. The Te 5p states provide stabilizing effect to the hybridized Te 5s-O 2p states, which is enabled by structural distortions of a β-TeO2 lattice. The multiple advantages of large bandgap, high hole mobility, two-dimensional structure, and excellent stability make β-TeO2 a highly competitive material for next-generation opto-electronic devices.
doi_str_mv 10.1063/5.0142734
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2783501089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2783501089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-e2a8c9567e9beb8a8cf41ca0940b5d7117e5204c354627ca795ba4016f070def3</originalsourceid><addsrcrecordid>eNqd0MFKAzEQBuAgCtbqwTcIeFLYOkk2m92jFKtCsZd6DtnsrG5pN2uSVftaPojP5JYWvHsaZvhmBn5CLhlMGGTiVk6ApVyJ9IiMGCiVCMbyYzICAJFkhWSn5CyE1dBKLsSIPC_fkOIabfSubSwN0fc29h6pq-nPd7LEBacm0M-mQlqatno1He2SuO0G8bUbBtw01rXVsOb8OTmpzTrgxaGOycvsfjl9TOaLh6fp3TyxvOAxQW5yW8hMYVFimQ9NnTJroEihlJViTKHkkFoh04wra1QhS5MCy2pQUGEtxuRqf7fz7r3HEPXK9b4dXmquciGBQV4M6nqvrHcheKx155uN8VvNQO_i0lIf4hrszd4G20QTG9f-D384_wd1V9XiF1nMeEU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2783501089</pqid></control><display><type>article</type><title>The electronic structure of β-TeO2 as wide bandgap p-type oxide semiconductor</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Shi, Jueli ; Sheng, Ziqian ; Zhu, Ling ; Xu, Xiangyu ; Gao, Yun ; Tang, Dingliang ; Zhang, Kelvin H. L.</creator><creatorcontrib>Shi, Jueli ; Sheng, Ziqian ; Zhu, Ling ; Xu, Xiangyu ; Gao, Yun ; Tang, Dingliang ; Zhang, Kelvin H. L.</creatorcontrib><description>Wide bandgap oxide semiconductors have gained significant attention in the fields from flat panel displays to solar cells, but their uses have been limited by the lack of high mobility p-type oxide semiconductors. Recently, β-phase TeO2 has been identified as a promising p-type oxide semiconductor with exceptional device performance. In this Letter, we report on the electronic structure of β-TeO2 studied by a combination of high-resolution x-ray spectroscopy and hybrid density functional theory calculations. The bulk bandgap of β-TeO2 is determined to be 3.7 eV. Direct comparisons between experimental and computational results demonstrate that the top of a valence band (VB) of β-TeO2 is composed of the hybridized Te 5s, Te 5p, and O 2p states, whereas a conduction band (CB) is dominated by unoccupied Te 5p states. The hybridization between spatially dispersive Te 5s2 states and O 2p orbitals helps us to alleviate the strong localization in the VB, leading to small hole effective mass and high hole mobility in β-TeO2. The Te 5p states provide stabilizing effect to the hybridized Te 5s-O 2p states, which is enabled by structural distortions of a β-TeO2 lattice. The multiple advantages of large bandgap, high hole mobility, two-dimensional structure, and excellent stability make β-TeO2 a highly competitive material for next-generation opto-electronic devices.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0142734</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Bulk density ; Competitive materials ; Conduction bands ; Density functional theory ; Electronic devices ; Electronic structure ; Energy gap ; Flat panel displays ; Hole mobility ; Optoelectronic devices ; P-type semiconductors ; Photovoltaic cells ; Semiconductors ; Solar cells ; Tellurium ; Tellurium dioxide ; Valence band</subject><ispartof>Applied physics letters, 2023-03, Vol.122 (10)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-e2a8c9567e9beb8a8cf41ca0940b5d7117e5204c354627ca795ba4016f070def3</citedby><cites>FETCH-LOGICAL-c292t-e2a8c9567e9beb8a8cf41ca0940b5d7117e5204c354627ca795ba4016f070def3</cites><orcidid>0000-0001-9352-6236 ; 0000-0001-9122-8921 ; 0000-0003-4129-2479 ; 0000-0003-0361-4828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0142734$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Shi, Jueli</creatorcontrib><creatorcontrib>Sheng, Ziqian</creatorcontrib><creatorcontrib>Zhu, Ling</creatorcontrib><creatorcontrib>Xu, Xiangyu</creatorcontrib><creatorcontrib>Gao, Yun</creatorcontrib><creatorcontrib>Tang, Dingliang</creatorcontrib><creatorcontrib>Zhang, Kelvin H. L.</creatorcontrib><title>The electronic structure of β-TeO2 as wide bandgap p-type oxide semiconductor</title><title>Applied physics letters</title><description>Wide bandgap oxide semiconductors have gained significant attention in the fields from flat panel displays to solar cells, but their uses have been limited by the lack of high mobility p-type oxide semiconductors. Recently, β-phase TeO2 has been identified as a promising p-type oxide semiconductor with exceptional device performance. In this Letter, we report on the electronic structure of β-TeO2 studied by a combination of high-resolution x-ray spectroscopy and hybrid density functional theory calculations. The bulk bandgap of β-TeO2 is determined to be 3.7 eV. Direct comparisons between experimental and computational results demonstrate that the top of a valence band (VB) of β-TeO2 is composed of the hybridized Te 5s, Te 5p, and O 2p states, whereas a conduction band (CB) is dominated by unoccupied Te 5p states. The hybridization between spatially dispersive Te 5s2 states and O 2p orbitals helps us to alleviate the strong localization in the VB, leading to small hole effective mass and high hole mobility in β-TeO2. The Te 5p states provide stabilizing effect to the hybridized Te 5s-O 2p states, which is enabled by structural distortions of a β-TeO2 lattice. The multiple advantages of large bandgap, high hole mobility, two-dimensional structure, and excellent stability make β-TeO2 a highly competitive material for next-generation opto-electronic devices.</description><subject>Applied physics</subject><subject>Bulk density</subject><subject>Competitive materials</subject><subject>Conduction bands</subject><subject>Density functional theory</subject><subject>Electronic devices</subject><subject>Electronic structure</subject><subject>Energy gap</subject><subject>Flat panel displays</subject><subject>Hole mobility</subject><subject>Optoelectronic devices</subject><subject>P-type semiconductors</subject><subject>Photovoltaic cells</subject><subject>Semiconductors</subject><subject>Solar cells</subject><subject>Tellurium</subject><subject>Tellurium dioxide</subject><subject>Valence band</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqd0MFKAzEQBuAgCtbqwTcIeFLYOkk2m92jFKtCsZd6DtnsrG5pN2uSVftaPojP5JYWvHsaZvhmBn5CLhlMGGTiVk6ApVyJ9IiMGCiVCMbyYzICAJFkhWSn5CyE1dBKLsSIPC_fkOIabfSubSwN0fc29h6pq-nPd7LEBacm0M-mQlqatno1He2SuO0G8bUbBtw01rXVsOb8OTmpzTrgxaGOycvsfjl9TOaLh6fp3TyxvOAxQW5yW8hMYVFimQ9NnTJroEihlJViTKHkkFoh04wra1QhS5MCy2pQUGEtxuRqf7fz7r3HEPXK9b4dXmquciGBQV4M6nqvrHcheKx155uN8VvNQO_i0lIf4hrszd4G20QTG9f-D384_wd1V9XiF1nMeEU</recordid><startdate>20230306</startdate><enddate>20230306</enddate><creator>Shi, Jueli</creator><creator>Sheng, Ziqian</creator><creator>Zhu, Ling</creator><creator>Xu, Xiangyu</creator><creator>Gao, Yun</creator><creator>Tang, Dingliang</creator><creator>Zhang, Kelvin H. L.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9352-6236</orcidid><orcidid>https://orcid.org/0000-0001-9122-8921</orcidid><orcidid>https://orcid.org/0000-0003-4129-2479</orcidid><orcidid>https://orcid.org/0000-0003-0361-4828</orcidid></search><sort><creationdate>20230306</creationdate><title>The electronic structure of β-TeO2 as wide bandgap p-type oxide semiconductor</title><author>Shi, Jueli ; Sheng, Ziqian ; Zhu, Ling ; Xu, Xiangyu ; Gao, Yun ; Tang, Dingliang ; Zhang, Kelvin H. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-e2a8c9567e9beb8a8cf41ca0940b5d7117e5204c354627ca795ba4016f070def3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Bulk density</topic><topic>Competitive materials</topic><topic>Conduction bands</topic><topic>Density functional theory</topic><topic>Electronic devices</topic><topic>Electronic structure</topic><topic>Energy gap</topic><topic>Flat panel displays</topic><topic>Hole mobility</topic><topic>Optoelectronic devices</topic><topic>P-type semiconductors</topic><topic>Photovoltaic cells</topic><topic>Semiconductors</topic><topic>Solar cells</topic><topic>Tellurium</topic><topic>Tellurium dioxide</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Jueli</creatorcontrib><creatorcontrib>Sheng, Ziqian</creatorcontrib><creatorcontrib>Zhu, Ling</creatorcontrib><creatorcontrib>Xu, Xiangyu</creatorcontrib><creatorcontrib>Gao, Yun</creatorcontrib><creatorcontrib>Tang, Dingliang</creatorcontrib><creatorcontrib>Zhang, Kelvin H. L.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Jueli</au><au>Sheng, Ziqian</au><au>Zhu, Ling</au><au>Xu, Xiangyu</au><au>Gao, Yun</au><au>Tang, Dingliang</au><au>Zhang, Kelvin H. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The electronic structure of β-TeO2 as wide bandgap p-type oxide semiconductor</atitle><jtitle>Applied physics letters</jtitle><date>2023-03-06</date><risdate>2023</risdate><volume>122</volume><issue>10</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Wide bandgap oxide semiconductors have gained significant attention in the fields from flat panel displays to solar cells, but their uses have been limited by the lack of high mobility p-type oxide semiconductors. Recently, β-phase TeO2 has been identified as a promising p-type oxide semiconductor with exceptional device performance. In this Letter, we report on the electronic structure of β-TeO2 studied by a combination of high-resolution x-ray spectroscopy and hybrid density functional theory calculations. The bulk bandgap of β-TeO2 is determined to be 3.7 eV. Direct comparisons between experimental and computational results demonstrate that the top of a valence band (VB) of β-TeO2 is composed of the hybridized Te 5s, Te 5p, and O 2p states, whereas a conduction band (CB) is dominated by unoccupied Te 5p states. The hybridization between spatially dispersive Te 5s2 states and O 2p orbitals helps us to alleviate the strong localization in the VB, leading to small hole effective mass and high hole mobility in β-TeO2. The Te 5p states provide stabilizing effect to the hybridized Te 5s-O 2p states, which is enabled by structural distortions of a β-TeO2 lattice. The multiple advantages of large bandgap, high hole mobility, two-dimensional structure, and excellent stability make β-TeO2 a highly competitive material for next-generation opto-electronic devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0142734</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9352-6236</orcidid><orcidid>https://orcid.org/0000-0001-9122-8921</orcidid><orcidid>https://orcid.org/0000-0003-4129-2479</orcidid><orcidid>https://orcid.org/0000-0003-0361-4828</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2023-03, Vol.122 (10)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_2783501089
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Bulk density
Competitive materials
Conduction bands
Density functional theory
Electronic devices
Electronic structure
Energy gap
Flat panel displays
Hole mobility
Optoelectronic devices
P-type semiconductors
Photovoltaic cells
Semiconductors
Solar cells
Tellurium
Tellurium dioxide
Valence band
title The electronic structure of β-TeO2 as wide bandgap p-type oxide semiconductor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20electronic%20structure%20of%20%CE%B2-TeO2%20as%20wide%20bandgap%20p-type%20oxide%20semiconductor&rft.jtitle=Applied%20physics%20letters&rft.au=Shi,%20Jueli&rft.date=2023-03-06&rft.volume=122&rft.issue=10&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0142734&rft_dat=%3Cproquest_cross%3E2783501089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2783501089&rft_id=info:pmid/&rfr_iscdi=true