Fuzzy judgement model for assessment of improvement effectiveness to performance of processing characteristics

Maintaining high levels of process quality is crucial to the competitiveness of manufacturing firms in today's increasingly global marketplace. To ensure the quality of manufactured products meets customer needs, process capability indices (PCIs) are widely used to analyze the process performan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of production research 2023-03, Vol.61 (5), p.1591-1605
Hauptverfasser: Chen, Kuen-Suan, Lai, Yuan-Lung, Huang, Ming-Chieh, Chang, Tsang-Chuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1605
container_issue 5
container_start_page 1591
container_title International journal of production research
container_volume 61
creator Chen, Kuen-Suan
Lai, Yuan-Lung
Huang, Ming-Chieh
Chang, Tsang-Chuan
description Maintaining high levels of process quality is crucial to the competitiveness of manufacturing firms in today's increasingly global marketplace. To ensure the quality of manufactured products meets customer needs, process capability indices (PCIs) are widely used to analyze the process performance of various processing characteristics. Products characterise by processing characteristics of both unilateral and bilateral specifications are common in the current sales market. Manufacturing firms must often adopt multiple PCIs to analyze the process performance of a single product, which is inefficient in practical applications and management. Yield-based index is not subject to this limitation. For this reason, we employed to evaluate process performance and the effectiveness of improvement measures. In practice, is estimated from samples, which means that misjudgment may occur in the assessment of process performance and improvement effectiveness due to sampling errors. We therefore derived the confidence interval of and, based on the producer's perspective, used the upper confidence limit to evaluate improvement effectiveness. To lower the risk of misjudgment and increase the reliability of improvement effectiveness in the case of data uncertainty, this paper further proposes fuzzy estimation using the right-sided confidence interval of and develops the fuzzy judgement model.
doi_str_mv 10.1080/00207543.2022.2044531
format Article
fullrecord <record><control><sourceid>proquest_econi</sourceid><recordid>TN_cdi_proquest_journals_2782842147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2782842147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-53306ccbbcf7c1a23fdf2dda4b0c6e047518beb663892043a4317ae55ac084663</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKc_QQh4Xc1nm90pw6kw8EbBu5CmJ7NjbWbSTbZfb7pOvDMXCZw87znJg9A1JbeUKHJHCCOFFPyWEcbSJoTk9ASNKM_zTCr1cYpGPZP10Dm6iHFJ0pJKjFA72-z3O7zcVAtooO1w4ytYYecDNjFCjIeid7hu1sFvBwacA9vVW2gTgDuP1xBSojGthZ5NpE03dbvA9tMEYzsIdexqGy_RmTOrCFfHc4zeZ49v0-ds_vr0Mn2YZ5ZPZJdJzklubVlaV1hqGHeVY1VlRElsDkQUkqoSyjznapL-y43gtDAgpbFEiVQeo5uhb3rK1wZip5d-E9o0UrNCMSUYFUWi5EDZ4GMM4PQ61I0JO02J7tXqX7W6V6uPalMODzmwvq3jX0pxJSZyQlRC7gekbg9mvn1YVbozu5UPLiRRKcb_n_IDDp6M8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2782842147</pqid></control><display><type>article</type><title>Fuzzy judgement model for assessment of improvement effectiveness to performance of processing characteristics</title><source>Taylor &amp; Francis</source><source>EBSCOhost Business Source Complete</source><creator>Chen, Kuen-Suan ; Lai, Yuan-Lung ; Huang, Ming-Chieh ; Chang, Tsang-Chuan</creator><creatorcontrib>Chen, Kuen-Suan ; Lai, Yuan-Lung ; Huang, Ming-Chieh ; Chang, Tsang-Chuan</creatorcontrib><description>Maintaining high levels of process quality is crucial to the competitiveness of manufacturing firms in today's increasingly global marketplace. To ensure the quality of manufactured products meets customer needs, process capability indices (PCIs) are widely used to analyze the process performance of various processing characteristics. Products characterise by processing characteristics of both unilateral and bilateral specifications are common in the current sales market. Manufacturing firms must often adopt multiple PCIs to analyze the process performance of a single product, which is inefficient in practical applications and management. Yield-based index is not subject to this limitation. For this reason, we employed to evaluate process performance and the effectiveness of improvement measures. In practice, is estimated from samples, which means that misjudgment may occur in the assessment of process performance and improvement effectiveness due to sampling errors. We therefore derived the confidence interval of and, based on the producer's perspective, used the upper confidence limit to evaluate improvement effectiveness. To lower the risk of misjudgment and increase the reliability of improvement effectiveness in the case of data uncertainty, this paper further proposes fuzzy estimation using the right-sided confidence interval of and develops the fuzzy judgement model.</description><identifier>ISSN: 0020-7543</identifier><identifier>EISSN: 1366-588X</identifier><identifier>DOI: 10.1080/00207543.2022.2044531</identifier><language>eng</language><publisher>London: Taylor &amp; Francis</publisher><subject>Capability indices ; Confidence intervals ; Confidence limits ; Effectiveness ; fuzzy estimation ; fuzzy judgement ; Global marketing ; Manufacturing ; Performance evaluation ; performance improvement effectiveness ; Process capability index ; right-sided confidence interval ; Sampling error ; Statistical analysis</subject><ispartof>International journal of production research, 2023-03, Vol.61 (5), p.1591-1605</ispartof><rights>2022 Informa UK Limited, trading as Taylor &amp; Francis Group 2022</rights><rights>2022 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-53306ccbbcf7c1a23fdf2dda4b0c6e047518beb663892043a4317ae55ac084663</citedby><cites>FETCH-LOGICAL-c395t-53306ccbbcf7c1a23fdf2dda4b0c6e047518beb663892043a4317ae55ac084663</cites><orcidid>0000-0001-8159-3538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/00207543.2022.2044531$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/00207543.2022.2044531$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,59620,60409</link.rule.ids></links><search><creatorcontrib>Chen, Kuen-Suan</creatorcontrib><creatorcontrib>Lai, Yuan-Lung</creatorcontrib><creatorcontrib>Huang, Ming-Chieh</creatorcontrib><creatorcontrib>Chang, Tsang-Chuan</creatorcontrib><title>Fuzzy judgement model for assessment of improvement effectiveness to performance of processing characteristics</title><title>International journal of production research</title><description>Maintaining high levels of process quality is crucial to the competitiveness of manufacturing firms in today's increasingly global marketplace. To ensure the quality of manufactured products meets customer needs, process capability indices (PCIs) are widely used to analyze the process performance of various processing characteristics. Products characterise by processing characteristics of both unilateral and bilateral specifications are common in the current sales market. Manufacturing firms must often adopt multiple PCIs to analyze the process performance of a single product, which is inefficient in practical applications and management. Yield-based index is not subject to this limitation. For this reason, we employed to evaluate process performance and the effectiveness of improvement measures. In practice, is estimated from samples, which means that misjudgment may occur in the assessment of process performance and improvement effectiveness due to sampling errors. We therefore derived the confidence interval of and, based on the producer's perspective, used the upper confidence limit to evaluate improvement effectiveness. To lower the risk of misjudgment and increase the reliability of improvement effectiveness in the case of data uncertainty, this paper further proposes fuzzy estimation using the right-sided confidence interval of and develops the fuzzy judgement model.</description><subject>Capability indices</subject><subject>Confidence intervals</subject><subject>Confidence limits</subject><subject>Effectiveness</subject><subject>fuzzy estimation</subject><subject>fuzzy judgement</subject><subject>Global marketing</subject><subject>Manufacturing</subject><subject>Performance evaluation</subject><subject>performance improvement effectiveness</subject><subject>Process capability index</subject><subject>right-sided confidence interval</subject><subject>Sampling error</subject><subject>Statistical analysis</subject><issn>0020-7543</issn><issn>1366-588X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKc_QQh4Xc1nm90pw6kw8EbBu5CmJ7NjbWbSTbZfb7pOvDMXCZw87znJg9A1JbeUKHJHCCOFFPyWEcbSJoTk9ASNKM_zTCr1cYpGPZP10Dm6iHFJ0pJKjFA72-z3O7zcVAtooO1w4ytYYecDNjFCjIeid7hu1sFvBwacA9vVW2gTgDuP1xBSojGthZ5NpE03dbvA9tMEYzsIdexqGy_RmTOrCFfHc4zeZ49v0-ds_vr0Mn2YZ5ZPZJdJzklubVlaV1hqGHeVY1VlRElsDkQUkqoSyjznapL-y43gtDAgpbFEiVQeo5uhb3rK1wZip5d-E9o0UrNCMSUYFUWi5EDZ4GMM4PQ61I0JO02J7tXqX7W6V6uPalMODzmwvq3jX0pxJSZyQlRC7gekbg9mvn1YVbozu5UPLiRRKcb_n_IDDp6M8g</recordid><startdate>20230304</startdate><enddate>20230304</enddate><creator>Chen, Kuen-Suan</creator><creator>Lai, Yuan-Lung</creator><creator>Huang, Ming-Chieh</creator><creator>Chang, Tsang-Chuan</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8159-3538</orcidid></search><sort><creationdate>20230304</creationdate><title>Fuzzy judgement model for assessment of improvement effectiveness to performance of processing characteristics</title><author>Chen, Kuen-Suan ; Lai, Yuan-Lung ; Huang, Ming-Chieh ; Chang, Tsang-Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-53306ccbbcf7c1a23fdf2dda4b0c6e047518beb663892043a4317ae55ac084663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Capability indices</topic><topic>Confidence intervals</topic><topic>Confidence limits</topic><topic>Effectiveness</topic><topic>fuzzy estimation</topic><topic>fuzzy judgement</topic><topic>Global marketing</topic><topic>Manufacturing</topic><topic>Performance evaluation</topic><topic>performance improvement effectiveness</topic><topic>Process capability index</topic><topic>right-sided confidence interval</topic><topic>Sampling error</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Kuen-Suan</creatorcontrib><creatorcontrib>Lai, Yuan-Lung</creatorcontrib><creatorcontrib>Huang, Ming-Chieh</creatorcontrib><creatorcontrib>Chang, Tsang-Chuan</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of production research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Kuen-Suan</au><au>Lai, Yuan-Lung</au><au>Huang, Ming-Chieh</au><au>Chang, Tsang-Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy judgement model for assessment of improvement effectiveness to performance of processing characteristics</atitle><jtitle>International journal of production research</jtitle><date>2023-03-04</date><risdate>2023</risdate><volume>61</volume><issue>5</issue><spage>1591</spage><epage>1605</epage><pages>1591-1605</pages><issn>0020-7543</issn><eissn>1366-588X</eissn><abstract>Maintaining high levels of process quality is crucial to the competitiveness of manufacturing firms in today's increasingly global marketplace. To ensure the quality of manufactured products meets customer needs, process capability indices (PCIs) are widely used to analyze the process performance of various processing characteristics. Products characterise by processing characteristics of both unilateral and bilateral specifications are common in the current sales market. Manufacturing firms must often adopt multiple PCIs to analyze the process performance of a single product, which is inefficient in practical applications and management. Yield-based index is not subject to this limitation. For this reason, we employed to evaluate process performance and the effectiveness of improvement measures. In practice, is estimated from samples, which means that misjudgment may occur in the assessment of process performance and improvement effectiveness due to sampling errors. We therefore derived the confidence interval of and, based on the producer's perspective, used the upper confidence limit to evaluate improvement effectiveness. To lower the risk of misjudgment and increase the reliability of improvement effectiveness in the case of data uncertainty, this paper further proposes fuzzy estimation using the right-sided confidence interval of and develops the fuzzy judgement model.</abstract><cop>London</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00207543.2022.2044531</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8159-3538</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0020-7543
ispartof International journal of production research, 2023-03, Vol.61 (5), p.1591-1605
issn 0020-7543
1366-588X
language eng
recordid cdi_proquest_journals_2782842147
source Taylor & Francis; EBSCOhost Business Source Complete
subjects Capability indices
Confidence intervals
Confidence limits
Effectiveness
fuzzy estimation
fuzzy judgement
Global marketing
Manufacturing
Performance evaluation
performance improvement effectiveness
Process capability index
right-sided confidence interval
Sampling error
Statistical analysis
title Fuzzy judgement model for assessment of improvement effectiveness to performance of processing characteristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A23%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_econi&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20judgement%20model%20for%20assessment%20of%20improvement%20effectiveness%20to%20performance%20of%20processing%20characteristics&rft.jtitle=International%20journal%20of%20production%20research&rft.au=Chen,%20Kuen-Suan&rft.date=2023-03-04&rft.volume=61&rft.issue=5&rft.spage=1591&rft.epage=1605&rft.pages=1591-1605&rft.issn=0020-7543&rft.eissn=1366-588X&rft_id=info:doi/10.1080/00207543.2022.2044531&rft_dat=%3Cproquest_econi%3E2782842147%3C/proquest_econi%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2782842147&rft_id=info:pmid/&rfr_iscdi=true