Cooperative spectrum sensing in cognitive radio networks using machine learning techniques

For effective utilization of the available spectrum and for preventing the channel interference among the users the sensing of the availability of spectrum becomes an essential task in case of Cognitive Radio Networks. Due to the effect of shadowing, fading, and uncertainty in the receiver, the over...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied nanoscience 2023, Vol.13 (3), p.2353-2363
Hauptverfasser: Nair, Resmi G., Narayanan, Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2363
container_issue 3
container_start_page 2353
container_title Applied nanoscience
container_volume 13
creator Nair, Resmi G.
Narayanan, Kumar
description For effective utilization of the available spectrum and for preventing the channel interference among the users the sensing of the availability of spectrum becomes an essential task in case of Cognitive Radio Networks. Due to the effect of shadowing, fading, and uncertainty in the receiver, the overall performance of the spectrum sensing technique was compromised. Utilizing the spatial diversity of the nodes the above mentioned issues can be overcome by following a cooperative spectrum sensing approach. This approach slightly increases the overhead and the time consumed for sensing the spectrum. This work introduces a technique to check the availability of spectrum based on cooperative approach wherein the problem of sensing the spectrum is formulated as a classification task. The secondary units transfer the modulated signal present in the channel to the primary unit which estimates the spectrogram of the same and sends it to a trained convolution neural network model to detect whether it is a signal or noise. The efficiency of the cooperative sensing approach is analysed based on the accuracy in detection and the probability of detection under multiple levels of Signal to Noise Ratio levels.
doi_str_mv 10.1007/s13204-021-02261-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2782225066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2782225066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-a774fa7d2225219e5ab85e316e5df58b7b15229af0a61f31ec4fcdadbb25a05d3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIVKU_wMkS54DtxHFzRBWPSpW4wIWL5Tjr1KW1g52A-HucBsGNlfYhe2Z2NQhdUnJNCRE3keaMFBlhNCUrUz1BM0YrknFOxenvTKpztIhxR1LwQpQ5n6HXlfcdBNXbD8CxA92H4YAjuGhdi63D2rfOHn-DaqzHDvpPH94iHo6Ig9Jb6wDvQQU3PvSgt86-DxAv0JlR-wiLnz5HL_d3z6vHbPP0sF7dbjLNiqrPlBCFUaJhjPF0KHBVLznktATeGL6sRU05Y5UyRJXU5BR0YXSjmrpmXBHe5HN0Nel2wY97e7nzQ3BppWRiOcqSskwoNqF08DEGMLIL9qDCl6REjjbKyUaZbJRHGyVJpHwixQR2LYQ_6X9Y3_qkdts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2782225066</pqid></control><display><type>article</type><title>Cooperative spectrum sensing in cognitive radio networks using machine learning techniques</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nair, Resmi G. ; Narayanan, Kumar</creator><creatorcontrib>Nair, Resmi G. ; Narayanan, Kumar</creatorcontrib><description>For effective utilization of the available spectrum and for preventing the channel interference among the users the sensing of the availability of spectrum becomes an essential task in case of Cognitive Radio Networks. Due to the effect of shadowing, fading, and uncertainty in the receiver, the overall performance of the spectrum sensing technique was compromised. Utilizing the spatial diversity of the nodes the above mentioned issues can be overcome by following a cooperative spectrum sensing approach. This approach slightly increases the overhead and the time consumed for sensing the spectrum. This work introduces a technique to check the availability of spectrum based on cooperative approach wherein the problem of sensing the spectrum is formulated as a classification task. The secondary units transfer the modulated signal present in the channel to the primary unit which estimates the spectrogram of the same and sends it to a trained convolution neural network model to detect whether it is a signal or noise. The efficiency of the cooperative sensing approach is analysed based on the accuracy in detection and the probability of detection under multiple levels of Signal to Noise Ratio levels.</description><identifier>ISSN: 2190-5509</identifier><identifier>EISSN: 2190-5517</identifier><identifier>DOI: 10.1007/s13204-021-02261-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Artificial neural networks ; Availability ; Chemistry and Materials Science ; Cognitive radio ; Machine learning ; Materials Science ; Membrane Biology ; Nanochemistry ; Nanotechnology ; Nanotechnology and Microengineering ; Original Article ; Radio networks ; Signal to noise ratio</subject><ispartof>Applied nanoscience, 2023, Vol.13 (3), p.2353-2363</ispartof><rights>King Abdulaziz City for Science and Technology 2022</rights><rights>King Abdulaziz City for Science and Technology 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-a774fa7d2225219e5ab85e316e5df58b7b15229af0a61f31ec4fcdadbb25a05d3</citedby><cites>FETCH-LOGICAL-c249t-a774fa7d2225219e5ab85e316e5df58b7b15229af0a61f31ec4fcdadbb25a05d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13204-021-02261-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13204-021-02261-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nair, Resmi G.</creatorcontrib><creatorcontrib>Narayanan, Kumar</creatorcontrib><title>Cooperative spectrum sensing in cognitive radio networks using machine learning techniques</title><title>Applied nanoscience</title><addtitle>Appl Nanosci</addtitle><description>For effective utilization of the available spectrum and for preventing the channel interference among the users the sensing of the availability of spectrum becomes an essential task in case of Cognitive Radio Networks. Due to the effect of shadowing, fading, and uncertainty in the receiver, the overall performance of the spectrum sensing technique was compromised. Utilizing the spatial diversity of the nodes the above mentioned issues can be overcome by following a cooperative spectrum sensing approach. This approach slightly increases the overhead and the time consumed for sensing the spectrum. This work introduces a technique to check the availability of spectrum based on cooperative approach wherein the problem of sensing the spectrum is formulated as a classification task. The secondary units transfer the modulated signal present in the channel to the primary unit which estimates the spectrogram of the same and sends it to a trained convolution neural network model to detect whether it is a signal or noise. The efficiency of the cooperative sensing approach is analysed based on the accuracy in detection and the probability of detection under multiple levels of Signal to Noise Ratio levels.</description><subject>Artificial neural networks</subject><subject>Availability</subject><subject>Chemistry and Materials Science</subject><subject>Cognitive radio</subject><subject>Machine learning</subject><subject>Materials Science</subject><subject>Membrane Biology</subject><subject>Nanochemistry</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Original Article</subject><subject>Radio networks</subject><subject>Signal to noise ratio</subject><issn>2190-5509</issn><issn>2190-5517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIVKU_wMkS54DtxHFzRBWPSpW4wIWL5Tjr1KW1g52A-HucBsGNlfYhe2Z2NQhdUnJNCRE3keaMFBlhNCUrUz1BM0YrknFOxenvTKpztIhxR1LwQpQ5n6HXlfcdBNXbD8CxA92H4YAjuGhdi63D2rfOHn-DaqzHDvpPH94iHo6Ig9Jb6wDvQQU3PvSgt86-DxAv0JlR-wiLnz5HL_d3z6vHbPP0sF7dbjLNiqrPlBCFUaJhjPF0KHBVLznktATeGL6sRU05Y5UyRJXU5BR0YXSjmrpmXBHe5HN0Nel2wY97e7nzQ3BppWRiOcqSskwoNqF08DEGMLIL9qDCl6REjjbKyUaZbJRHGyVJpHwixQR2LYQ_6X9Y3_qkdts</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Nair, Resmi G.</creator><creator>Narayanan, Kumar</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>Cooperative spectrum sensing in cognitive radio networks using machine learning techniques</title><author>Nair, Resmi G. ; Narayanan, Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-a774fa7d2225219e5ab85e316e5df58b7b15229af0a61f31ec4fcdadbb25a05d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Availability</topic><topic>Chemistry and Materials Science</topic><topic>Cognitive radio</topic><topic>Machine learning</topic><topic>Materials Science</topic><topic>Membrane Biology</topic><topic>Nanochemistry</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Original Article</topic><topic>Radio networks</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nair, Resmi G.</creatorcontrib><creatorcontrib>Narayanan, Kumar</creatorcontrib><collection>CrossRef</collection><jtitle>Applied nanoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nair, Resmi G.</au><au>Narayanan, Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooperative spectrum sensing in cognitive radio networks using machine learning techniques</atitle><jtitle>Applied nanoscience</jtitle><stitle>Appl Nanosci</stitle><date>2023</date><risdate>2023</risdate><volume>13</volume><issue>3</issue><spage>2353</spage><epage>2363</epage><pages>2353-2363</pages><issn>2190-5509</issn><eissn>2190-5517</eissn><abstract>For effective utilization of the available spectrum and for preventing the channel interference among the users the sensing of the availability of spectrum becomes an essential task in case of Cognitive Radio Networks. Due to the effect of shadowing, fading, and uncertainty in the receiver, the overall performance of the spectrum sensing technique was compromised. Utilizing the spatial diversity of the nodes the above mentioned issues can be overcome by following a cooperative spectrum sensing approach. This approach slightly increases the overhead and the time consumed for sensing the spectrum. This work introduces a technique to check the availability of spectrum based on cooperative approach wherein the problem of sensing the spectrum is formulated as a classification task. The secondary units transfer the modulated signal present in the channel to the primary unit which estimates the spectrogram of the same and sends it to a trained convolution neural network model to detect whether it is a signal or noise. The efficiency of the cooperative sensing approach is analysed based on the accuracy in detection and the probability of detection under multiple levels of Signal to Noise Ratio levels.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13204-021-02261-0</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2190-5509
ispartof Applied nanoscience, 2023, Vol.13 (3), p.2353-2363
issn 2190-5509
2190-5517
language eng
recordid cdi_proquest_journals_2782225066
source SpringerLink Journals - AutoHoldings
subjects Artificial neural networks
Availability
Chemistry and Materials Science
Cognitive radio
Machine learning
Materials Science
Membrane Biology
Nanochemistry
Nanotechnology
Nanotechnology and Microengineering
Original Article
Radio networks
Signal to noise ratio
title Cooperative spectrum sensing in cognitive radio networks using machine learning techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooperative%20spectrum%20sensing%20in%20cognitive%20radio%20networks%20using%20machine%20learning%20techniques&rft.jtitle=Applied%20nanoscience&rft.au=Nair,%20Resmi%20G.&rft.date=2023&rft.volume=13&rft.issue=3&rft.spage=2353&rft.epage=2363&rft.pages=2353-2363&rft.issn=2190-5509&rft.eissn=2190-5517&rft_id=info:doi/10.1007/s13204-021-02261-0&rft_dat=%3Cproquest_cross%3E2782225066%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2782225066&rft_id=info:pmid/&rfr_iscdi=true