Cooperative spectrum sensing in cognitive radio networks using machine learning techniques
For effective utilization of the available spectrum and for preventing the channel interference among the users the sensing of the availability of spectrum becomes an essential task in case of Cognitive Radio Networks. Due to the effect of shadowing, fading, and uncertainty in the receiver, the over...
Gespeichert in:
Veröffentlicht in: | Applied nanoscience 2023, Vol.13 (3), p.2353-2363 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2363 |
---|---|
container_issue | 3 |
container_start_page | 2353 |
container_title | Applied nanoscience |
container_volume | 13 |
creator | Nair, Resmi G. Narayanan, Kumar |
description | For effective utilization of the available spectrum and for preventing the channel interference among the users the sensing of the availability of spectrum becomes an essential task in case of Cognitive Radio Networks. Due to the effect of shadowing, fading, and uncertainty in the receiver, the overall performance of the spectrum sensing technique was compromised. Utilizing the spatial diversity of the nodes the above mentioned issues can be overcome by following a cooperative spectrum sensing approach. This approach slightly increases the overhead and the time consumed for sensing the spectrum. This work introduces a technique to check the availability of spectrum based on cooperative approach wherein the problem of sensing the spectrum is formulated as a classification task. The secondary units transfer the modulated signal present in the channel to the primary unit which estimates the spectrogram of the same and sends it to a trained convolution neural network model to detect whether it is a signal or noise. The efficiency of the cooperative sensing approach is analysed based on the accuracy in detection and the probability of detection under multiple levels of Signal to Noise Ratio levels. |
doi_str_mv | 10.1007/s13204-021-02261-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2782225066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2782225066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-a774fa7d2225219e5ab85e316e5df58b7b15229af0a61f31ec4fcdadbb25a05d3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIVKU_wMkS54DtxHFzRBWPSpW4wIWL5Tjr1KW1g52A-HucBsGNlfYhe2Z2NQhdUnJNCRE3keaMFBlhNCUrUz1BM0YrknFOxenvTKpztIhxR1LwQpQ5n6HXlfcdBNXbD8CxA92H4YAjuGhdi63D2rfOHn-DaqzHDvpPH94iHo6Ig9Jb6wDvQQU3PvSgt86-DxAv0JlR-wiLnz5HL_d3z6vHbPP0sF7dbjLNiqrPlBCFUaJhjPF0KHBVLznktATeGL6sRU05Y5UyRJXU5BR0YXSjmrpmXBHe5HN0Nel2wY97e7nzQ3BppWRiOcqSskwoNqF08DEGMLIL9qDCl6REjjbKyUaZbJRHGyVJpHwixQR2LYQ_6X9Y3_qkdts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2782225066</pqid></control><display><type>article</type><title>Cooperative spectrum sensing in cognitive radio networks using machine learning techniques</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nair, Resmi G. ; Narayanan, Kumar</creator><creatorcontrib>Nair, Resmi G. ; Narayanan, Kumar</creatorcontrib><description>For effective utilization of the available spectrum and for preventing the channel interference among the users the sensing of the availability of spectrum becomes an essential task in case of Cognitive Radio Networks. Due to the effect of shadowing, fading, and uncertainty in the receiver, the overall performance of the spectrum sensing technique was compromised. Utilizing the spatial diversity of the nodes the above mentioned issues can be overcome by following a cooperative spectrum sensing approach. This approach slightly increases the overhead and the time consumed for sensing the spectrum. This work introduces a technique to check the availability of spectrum based on cooperative approach wherein the problem of sensing the spectrum is formulated as a classification task. The secondary units transfer the modulated signal present in the channel to the primary unit which estimates the spectrogram of the same and sends it to a trained convolution neural network model to detect whether it is a signal or noise. The efficiency of the cooperative sensing approach is analysed based on the accuracy in detection and the probability of detection under multiple levels of Signal to Noise Ratio levels.</description><identifier>ISSN: 2190-5509</identifier><identifier>EISSN: 2190-5517</identifier><identifier>DOI: 10.1007/s13204-021-02261-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Artificial neural networks ; Availability ; Chemistry and Materials Science ; Cognitive radio ; Machine learning ; Materials Science ; Membrane Biology ; Nanochemistry ; Nanotechnology ; Nanotechnology and Microengineering ; Original Article ; Radio networks ; Signal to noise ratio</subject><ispartof>Applied nanoscience, 2023, Vol.13 (3), p.2353-2363</ispartof><rights>King Abdulaziz City for Science and Technology 2022</rights><rights>King Abdulaziz City for Science and Technology 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-a774fa7d2225219e5ab85e316e5df58b7b15229af0a61f31ec4fcdadbb25a05d3</citedby><cites>FETCH-LOGICAL-c249t-a774fa7d2225219e5ab85e316e5df58b7b15229af0a61f31ec4fcdadbb25a05d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13204-021-02261-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13204-021-02261-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Nair, Resmi G.</creatorcontrib><creatorcontrib>Narayanan, Kumar</creatorcontrib><title>Cooperative spectrum sensing in cognitive radio networks using machine learning techniques</title><title>Applied nanoscience</title><addtitle>Appl Nanosci</addtitle><description>For effective utilization of the available spectrum and for preventing the channel interference among the users the sensing of the availability of spectrum becomes an essential task in case of Cognitive Radio Networks. Due to the effect of shadowing, fading, and uncertainty in the receiver, the overall performance of the spectrum sensing technique was compromised. Utilizing the spatial diversity of the nodes the above mentioned issues can be overcome by following a cooperative spectrum sensing approach. This approach slightly increases the overhead and the time consumed for sensing the spectrum. This work introduces a technique to check the availability of spectrum based on cooperative approach wherein the problem of sensing the spectrum is formulated as a classification task. The secondary units transfer the modulated signal present in the channel to the primary unit which estimates the spectrogram of the same and sends it to a trained convolution neural network model to detect whether it is a signal or noise. The efficiency of the cooperative sensing approach is analysed based on the accuracy in detection and the probability of detection under multiple levels of Signal to Noise Ratio levels.</description><subject>Artificial neural networks</subject><subject>Availability</subject><subject>Chemistry and Materials Science</subject><subject>Cognitive radio</subject><subject>Machine learning</subject><subject>Materials Science</subject><subject>Membrane Biology</subject><subject>Nanochemistry</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Original Article</subject><subject>Radio networks</subject><subject>Signal to noise ratio</subject><issn>2190-5509</issn><issn>2190-5517</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIVKU_wMkS54DtxHFzRBWPSpW4wIWL5Tjr1KW1g52A-HucBsGNlfYhe2Z2NQhdUnJNCRE3keaMFBlhNCUrUz1BM0YrknFOxenvTKpztIhxR1LwQpQ5n6HXlfcdBNXbD8CxA92H4YAjuGhdi63D2rfOHn-DaqzHDvpPH94iHo6Ig9Jb6wDvQQU3PvSgt86-DxAv0JlR-wiLnz5HL_d3z6vHbPP0sF7dbjLNiqrPlBCFUaJhjPF0KHBVLznktATeGL6sRU05Y5UyRJXU5BR0YXSjmrpmXBHe5HN0Nel2wY97e7nzQ3BppWRiOcqSskwoNqF08DEGMLIL9qDCl6REjjbKyUaZbJRHGyVJpHwixQR2LYQ_6X9Y3_qkdts</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Nair, Resmi G.</creator><creator>Narayanan, Kumar</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>Cooperative spectrum sensing in cognitive radio networks using machine learning techniques</title><author>Nair, Resmi G. ; Narayanan, Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-a774fa7d2225219e5ab85e316e5df58b7b15229af0a61f31ec4fcdadbb25a05d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Availability</topic><topic>Chemistry and Materials Science</topic><topic>Cognitive radio</topic><topic>Machine learning</topic><topic>Materials Science</topic><topic>Membrane Biology</topic><topic>Nanochemistry</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Original Article</topic><topic>Radio networks</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nair, Resmi G.</creatorcontrib><creatorcontrib>Narayanan, Kumar</creatorcontrib><collection>CrossRef</collection><jtitle>Applied nanoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nair, Resmi G.</au><au>Narayanan, Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooperative spectrum sensing in cognitive radio networks using machine learning techniques</atitle><jtitle>Applied nanoscience</jtitle><stitle>Appl Nanosci</stitle><date>2023</date><risdate>2023</risdate><volume>13</volume><issue>3</issue><spage>2353</spage><epage>2363</epage><pages>2353-2363</pages><issn>2190-5509</issn><eissn>2190-5517</eissn><abstract>For effective utilization of the available spectrum and for preventing the channel interference among the users the sensing of the availability of spectrum becomes an essential task in case of Cognitive Radio Networks. Due to the effect of shadowing, fading, and uncertainty in the receiver, the overall performance of the spectrum sensing technique was compromised. Utilizing the spatial diversity of the nodes the above mentioned issues can be overcome by following a cooperative spectrum sensing approach. This approach slightly increases the overhead and the time consumed for sensing the spectrum. This work introduces a technique to check the availability of spectrum based on cooperative approach wherein the problem of sensing the spectrum is formulated as a classification task. The secondary units transfer the modulated signal present in the channel to the primary unit which estimates the spectrogram of the same and sends it to a trained convolution neural network model to detect whether it is a signal or noise. The efficiency of the cooperative sensing approach is analysed based on the accuracy in detection and the probability of detection under multiple levels of Signal to Noise Ratio levels.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13204-021-02261-0</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5509 |
ispartof | Applied nanoscience, 2023, Vol.13 (3), p.2353-2363 |
issn | 2190-5509 2190-5517 |
language | eng |
recordid | cdi_proquest_journals_2782225066 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial neural networks Availability Chemistry and Materials Science Cognitive radio Machine learning Materials Science Membrane Biology Nanochemistry Nanotechnology Nanotechnology and Microengineering Original Article Radio networks Signal to noise ratio |
title | Cooperative spectrum sensing in cognitive radio networks using machine learning techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A11%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooperative%20spectrum%20sensing%20in%20cognitive%20radio%20networks%20using%20machine%20learning%20techniques&rft.jtitle=Applied%20nanoscience&rft.au=Nair,%20Resmi%20G.&rft.date=2023&rft.volume=13&rft.issue=3&rft.spage=2353&rft.epage=2363&rft.pages=2353-2363&rft.issn=2190-5509&rft.eissn=2190-5517&rft_id=info:doi/10.1007/s13204-021-02261-0&rft_dat=%3Cproquest_cross%3E2782225066%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2782225066&rft_id=info:pmid/&rfr_iscdi=true |