Perceptron for channel estimation and signal detection in OFDM systems
OFDM (ORTHOGONAL frequency-division multiplexing) is a well-known modulation scheme that has been widely employed in wireless broadband systems in the previous decade to combat frequency-selective type fading in wireless channels. In OFDM approaches, channel state information is critical for detecti...
Gespeichert in:
Veröffentlicht in: | Journal of optics (New Delhi) 2023-03, Vol.52 (1), p.69-76 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | 1 |
container_start_page | 69 |
container_title | Journal of optics (New Delhi) |
container_volume | 52 |
creator | Rani, Meenu Singal, Poonam |
description | OFDM (ORTHOGONAL frequency-division multiplexing) is a well-known modulation scheme that has been widely employed in wireless broadband systems in the previous decade to combat frequency-selective type fading in wireless channels. In OFDM approaches, channel state information is critical for detecting and decoding coherent signals. Pilot tones are frequently included into the subcarriers of OFDM signals to perform channel estimation. The perceptron neural network (DNN) has shown to be an effective tool for channel estimation in wireless communication's suboptimal conditions. Prior to the demodulation of OFDM signals, a dynamic channel estimate is important. Depending on the channel types and circumstances, deep learning-based channel estimation outperforms classical channel estimation methods such as minimal mean-square error (MMSE) and least squares (LS). The simulation results validate the projected Perceptron model’s validity and demonstrate the use of our proposed Perceptron-based channel estimation in both nonlinear and linear signal models. |
doi_str_mv | 10.1007/s12596-022-00924-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2782223473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2782223473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-95ba6589bb68796860b088796f8279b13422e5581cda227536749097820acd273</originalsourceid><addsrcrecordid>eNp9UE1Lw0AUXETBUvsHPAU8r759yX4dpVoVKvWg52WTbGqk3dTdFNp_7zYRvHl6wzAzzBtCrhncMgB5FxlyLSggUgCNBT2ckQloWVChAc4HjFQpZJdkFmNbAgcBDLiekMWbC5Xb9aHzWdOFrPq03rtN5mLfbm3fJtr6Oovt2ttNVrveVQPZ-my1eHjN4jH2bhuvyEVjN9HNfu-UfCwe3-fPdLl6epnfL2mFEnqqeWkFV7oshZJaKAElqBNqFEpdsrxAdJwrVtUWUfJcyEKn9grBVjXKfEpuxtxd6L73qaT56vYhVYsGkwoxL2SeVDiqqtDFGFxjdiF9E46GgTlNZsbJTJrMDJOZQzLloykmsV-78Bf9j-sHLfRs8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2782223473</pqid></control><display><type>article</type><title>Perceptron for channel estimation and signal detection in OFDM systems</title><source>SpringerNature Journals</source><creator>Rani, Meenu ; Singal, Poonam</creator><creatorcontrib>Rani, Meenu ; Singal, Poonam</creatorcontrib><description>OFDM (ORTHOGONAL frequency-division multiplexing) is a well-known modulation scheme that has been widely employed in wireless broadband systems in the previous decade to combat frequency-selective type fading in wireless channels. In OFDM approaches, channel state information is critical for detecting and decoding coherent signals. Pilot tones are frequently included into the subcarriers of OFDM signals to perform channel estimation. The perceptron neural network (DNN) has shown to be an effective tool for channel estimation in wireless communication's suboptimal conditions. Prior to the demodulation of OFDM signals, a dynamic channel estimate is important. Depending on the channel types and circumstances, deep learning-based channel estimation outperforms classical channel estimation methods such as minimal mean-square error (MMSE) and least squares (LS). The simulation results validate the projected Perceptron model’s validity and demonstrate the use of our proposed Perceptron-based channel estimation in both nonlinear and linear signal models.</description><identifier>ISSN: 0972-8821</identifier><identifier>EISSN: 0974-6900</identifier><identifier>DOI: 10.1007/s12596-022-00924-x</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Broadband ; Demodulation ; Lasers ; Neural networks ; Optical Devices ; Optics ; Orthogonal Frequency Division Multiplexing ; Photonics ; Physics ; Physics and Astronomy ; Research Article ; Signal detection ; Wireless communications</subject><ispartof>Journal of optics (New Delhi), 2023-03, Vol.52 (1), p.69-76</ispartof><rights>The Author(s), under exclusive licence to The Optical Society of India 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-95ba6589bb68796860b088796f8279b13422e5581cda227536749097820acd273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12596-022-00924-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12596-022-00924-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Rani, Meenu</creatorcontrib><creatorcontrib>Singal, Poonam</creatorcontrib><title>Perceptron for channel estimation and signal detection in OFDM systems</title><title>Journal of optics (New Delhi)</title><addtitle>J Opt</addtitle><description>OFDM (ORTHOGONAL frequency-division multiplexing) is a well-known modulation scheme that has been widely employed in wireless broadband systems in the previous decade to combat frequency-selective type fading in wireless channels. In OFDM approaches, channel state information is critical for detecting and decoding coherent signals. Pilot tones are frequently included into the subcarriers of OFDM signals to perform channel estimation. The perceptron neural network (DNN) has shown to be an effective tool for channel estimation in wireless communication's suboptimal conditions. Prior to the demodulation of OFDM signals, a dynamic channel estimate is important. Depending on the channel types and circumstances, deep learning-based channel estimation outperforms classical channel estimation methods such as minimal mean-square error (MMSE) and least squares (LS). The simulation results validate the projected Perceptron model’s validity and demonstrate the use of our proposed Perceptron-based channel estimation in both nonlinear and linear signal models.</description><subject>Broadband</subject><subject>Demodulation</subject><subject>Lasers</subject><subject>Neural networks</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Research Article</subject><subject>Signal detection</subject><subject>Wireless communications</subject><issn>0972-8821</issn><issn>0974-6900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UE1Lw0AUXETBUvsHPAU8r759yX4dpVoVKvWg52WTbGqk3dTdFNp_7zYRvHl6wzAzzBtCrhncMgB5FxlyLSggUgCNBT2ckQloWVChAc4HjFQpZJdkFmNbAgcBDLiekMWbC5Xb9aHzWdOFrPq03rtN5mLfbm3fJtr6Oovt2ttNVrveVQPZ-my1eHjN4jH2bhuvyEVjN9HNfu-UfCwe3-fPdLl6epnfL2mFEnqqeWkFV7oshZJaKAElqBNqFEpdsrxAdJwrVtUWUfJcyEKn9grBVjXKfEpuxtxd6L73qaT56vYhVYsGkwoxL2SeVDiqqtDFGFxjdiF9E46GgTlNZsbJTJrMDJOZQzLloykmsV-78Bf9j-sHLfRs8g</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Rani, Meenu</creator><creator>Singal, Poonam</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>Perceptron for channel estimation and signal detection in OFDM systems</title><author>Rani, Meenu ; Singal, Poonam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-95ba6589bb68796860b088796f8279b13422e5581cda227536749097820acd273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Broadband</topic><topic>Demodulation</topic><topic>Lasers</topic><topic>Neural networks</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Research Article</topic><topic>Signal detection</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rani, Meenu</creatorcontrib><creatorcontrib>Singal, Poonam</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of optics (New Delhi)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rani, Meenu</au><au>Singal, Poonam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perceptron for channel estimation and signal detection in OFDM systems</atitle><jtitle>Journal of optics (New Delhi)</jtitle><stitle>J Opt</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>52</volume><issue>1</issue><spage>69</spage><epage>76</epage><pages>69-76</pages><issn>0972-8821</issn><eissn>0974-6900</eissn><abstract>OFDM (ORTHOGONAL frequency-division multiplexing) is a well-known modulation scheme that has been widely employed in wireless broadband systems in the previous decade to combat frequency-selective type fading in wireless channels. In OFDM approaches, channel state information is critical for detecting and decoding coherent signals. Pilot tones are frequently included into the subcarriers of OFDM signals to perform channel estimation. The perceptron neural network (DNN) has shown to be an effective tool for channel estimation in wireless communication's suboptimal conditions. Prior to the demodulation of OFDM signals, a dynamic channel estimate is important. Depending on the channel types and circumstances, deep learning-based channel estimation outperforms classical channel estimation methods such as minimal mean-square error (MMSE) and least squares (LS). The simulation results validate the projected Perceptron model’s validity and demonstrate the use of our proposed Perceptron-based channel estimation in both nonlinear and linear signal models.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12596-022-00924-x</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0972-8821 |
ispartof | Journal of optics (New Delhi), 2023-03, Vol.52 (1), p.69-76 |
issn | 0972-8821 0974-6900 |
language | eng |
recordid | cdi_proquest_journals_2782223473 |
source | SpringerNature Journals |
subjects | Broadband Demodulation Lasers Neural networks Optical Devices Optics Orthogonal Frequency Division Multiplexing Photonics Physics Physics and Astronomy Research Article Signal detection Wireless communications |
title | Perceptron for channel estimation and signal detection in OFDM systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T10%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perceptron%20for%20channel%20estimation%20and%20signal%20detection%20in%20OFDM%20systems&rft.jtitle=Journal%20of%20optics%20(New%20Delhi)&rft.au=Rani,%20Meenu&rft.date=2023-03-01&rft.volume=52&rft.issue=1&rft.spage=69&rft.epage=76&rft.pages=69-76&rft.issn=0972-8821&rft.eissn=0974-6900&rft_id=info:doi/10.1007/s12596-022-00924-x&rft_dat=%3Cproquest_cross%3E2782223473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2782223473&rft_id=info:pmid/&rfr_iscdi=true |