Perceptron for channel estimation and signal detection in OFDM systems

OFDM (ORTHOGONAL frequency-division multiplexing) is a well-known modulation scheme that has been widely employed in wireless broadband systems in the previous decade to combat frequency-selective type fading in wireless channels. In OFDM approaches, channel state information is critical for detecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optics (New Delhi) 2023-03, Vol.52 (1), p.69-76
Hauptverfasser: Rani, Meenu, Singal, Poonam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue 1
container_start_page 69
container_title Journal of optics (New Delhi)
container_volume 52
creator Rani, Meenu
Singal, Poonam
description OFDM (ORTHOGONAL frequency-division multiplexing) is a well-known modulation scheme that has been widely employed in wireless broadband systems in the previous decade to combat frequency-selective type fading in wireless channels. In OFDM approaches, channel state information is critical for detecting and decoding coherent signals. Pilot tones are frequently included into the subcarriers of OFDM signals to perform channel estimation. The perceptron neural network (DNN) has shown to be an effective tool for channel estimation in wireless communication's suboptimal conditions. Prior to the demodulation of OFDM signals, a dynamic channel estimate is important. Depending on the channel types and circumstances, deep learning-based channel estimation outperforms classical channel estimation methods such as minimal mean-square error (MMSE) and least squares (LS). The simulation results validate the projected Perceptron model’s validity and demonstrate the use of our proposed Perceptron-based channel estimation in both nonlinear and linear signal models.
doi_str_mv 10.1007/s12596-022-00924-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2782223473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2782223473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-95ba6589bb68796860b088796f8279b13422e5581cda227536749097820acd273</originalsourceid><addsrcrecordid>eNp9UE1Lw0AUXETBUvsHPAU8r759yX4dpVoVKvWg52WTbGqk3dTdFNp_7zYRvHl6wzAzzBtCrhncMgB5FxlyLSggUgCNBT2ckQloWVChAc4HjFQpZJdkFmNbAgcBDLiekMWbC5Xb9aHzWdOFrPq03rtN5mLfbm3fJtr6Oovt2ttNVrveVQPZ-my1eHjN4jH2bhuvyEVjN9HNfu-UfCwe3-fPdLl6epnfL2mFEnqqeWkFV7oshZJaKAElqBNqFEpdsrxAdJwrVtUWUfJcyEKn9grBVjXKfEpuxtxd6L73qaT56vYhVYsGkwoxL2SeVDiqqtDFGFxjdiF9E46GgTlNZsbJTJrMDJOZQzLloykmsV-78Bf9j-sHLfRs8g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2782223473</pqid></control><display><type>article</type><title>Perceptron for channel estimation and signal detection in OFDM systems</title><source>SpringerNature Journals</source><creator>Rani, Meenu ; Singal, Poonam</creator><creatorcontrib>Rani, Meenu ; Singal, Poonam</creatorcontrib><description>OFDM (ORTHOGONAL frequency-division multiplexing) is a well-known modulation scheme that has been widely employed in wireless broadband systems in the previous decade to combat frequency-selective type fading in wireless channels. In OFDM approaches, channel state information is critical for detecting and decoding coherent signals. Pilot tones are frequently included into the subcarriers of OFDM signals to perform channel estimation. The perceptron neural network (DNN) has shown to be an effective tool for channel estimation in wireless communication's suboptimal conditions. Prior to the demodulation of OFDM signals, a dynamic channel estimate is important. Depending on the channel types and circumstances, deep learning-based channel estimation outperforms classical channel estimation methods such as minimal mean-square error (MMSE) and least squares (LS). The simulation results validate the projected Perceptron model’s validity and demonstrate the use of our proposed Perceptron-based channel estimation in both nonlinear and linear signal models.</description><identifier>ISSN: 0972-8821</identifier><identifier>EISSN: 0974-6900</identifier><identifier>DOI: 10.1007/s12596-022-00924-x</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Broadband ; Demodulation ; Lasers ; Neural networks ; Optical Devices ; Optics ; Orthogonal Frequency Division Multiplexing ; Photonics ; Physics ; Physics and Astronomy ; Research Article ; Signal detection ; Wireless communications</subject><ispartof>Journal of optics (New Delhi), 2023-03, Vol.52 (1), p.69-76</ispartof><rights>The Author(s), under exclusive licence to The Optical Society of India 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-95ba6589bb68796860b088796f8279b13422e5581cda227536749097820acd273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12596-022-00924-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12596-022-00924-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Rani, Meenu</creatorcontrib><creatorcontrib>Singal, Poonam</creatorcontrib><title>Perceptron for channel estimation and signal detection in OFDM systems</title><title>Journal of optics (New Delhi)</title><addtitle>J Opt</addtitle><description>OFDM (ORTHOGONAL frequency-division multiplexing) is a well-known modulation scheme that has been widely employed in wireless broadband systems in the previous decade to combat frequency-selective type fading in wireless channels. In OFDM approaches, channel state information is critical for detecting and decoding coherent signals. Pilot tones are frequently included into the subcarriers of OFDM signals to perform channel estimation. The perceptron neural network (DNN) has shown to be an effective tool for channel estimation in wireless communication's suboptimal conditions. Prior to the demodulation of OFDM signals, a dynamic channel estimate is important. Depending on the channel types and circumstances, deep learning-based channel estimation outperforms classical channel estimation methods such as minimal mean-square error (MMSE) and least squares (LS). The simulation results validate the projected Perceptron model’s validity and demonstrate the use of our proposed Perceptron-based channel estimation in both nonlinear and linear signal models.</description><subject>Broadband</subject><subject>Demodulation</subject><subject>Lasers</subject><subject>Neural networks</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Research Article</subject><subject>Signal detection</subject><subject>Wireless communications</subject><issn>0972-8821</issn><issn>0974-6900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UE1Lw0AUXETBUvsHPAU8r759yX4dpVoVKvWg52WTbGqk3dTdFNp_7zYRvHl6wzAzzBtCrhncMgB5FxlyLSggUgCNBT2ckQloWVChAc4HjFQpZJdkFmNbAgcBDLiekMWbC5Xb9aHzWdOFrPq03rtN5mLfbm3fJtr6Oovt2ttNVrveVQPZ-my1eHjN4jH2bhuvyEVjN9HNfu-UfCwe3-fPdLl6epnfL2mFEnqqeWkFV7oshZJaKAElqBNqFEpdsrxAdJwrVtUWUfJcyEKn9grBVjXKfEpuxtxd6L73qaT56vYhVYsGkwoxL2SeVDiqqtDFGFxjdiF9E46GgTlNZsbJTJrMDJOZQzLloykmsV-78Bf9j-sHLfRs8g</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Rani, Meenu</creator><creator>Singal, Poonam</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>Perceptron for channel estimation and signal detection in OFDM systems</title><author>Rani, Meenu ; Singal, Poonam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-95ba6589bb68796860b088796f8279b13422e5581cda227536749097820acd273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Broadband</topic><topic>Demodulation</topic><topic>Lasers</topic><topic>Neural networks</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Research Article</topic><topic>Signal detection</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rani, Meenu</creatorcontrib><creatorcontrib>Singal, Poonam</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of optics (New Delhi)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rani, Meenu</au><au>Singal, Poonam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perceptron for channel estimation and signal detection in OFDM systems</atitle><jtitle>Journal of optics (New Delhi)</jtitle><stitle>J Opt</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>52</volume><issue>1</issue><spage>69</spage><epage>76</epage><pages>69-76</pages><issn>0972-8821</issn><eissn>0974-6900</eissn><abstract>OFDM (ORTHOGONAL frequency-division multiplexing) is a well-known modulation scheme that has been widely employed in wireless broadband systems in the previous decade to combat frequency-selective type fading in wireless channels. In OFDM approaches, channel state information is critical for detecting and decoding coherent signals. Pilot tones are frequently included into the subcarriers of OFDM signals to perform channel estimation. The perceptron neural network (DNN) has shown to be an effective tool for channel estimation in wireless communication's suboptimal conditions. Prior to the demodulation of OFDM signals, a dynamic channel estimate is important. Depending on the channel types and circumstances, deep learning-based channel estimation outperforms classical channel estimation methods such as minimal mean-square error (MMSE) and least squares (LS). The simulation results validate the projected Perceptron model’s validity and demonstrate the use of our proposed Perceptron-based channel estimation in both nonlinear and linear signal models.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12596-022-00924-x</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0972-8821
ispartof Journal of optics (New Delhi), 2023-03, Vol.52 (1), p.69-76
issn 0972-8821
0974-6900
language eng
recordid cdi_proquest_journals_2782223473
source SpringerNature Journals
subjects Broadband
Demodulation
Lasers
Neural networks
Optical Devices
Optics
Orthogonal Frequency Division Multiplexing
Photonics
Physics
Physics and Astronomy
Research Article
Signal detection
Wireless communications
title Perceptron for channel estimation and signal detection in OFDM systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-29T10%3A36%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perceptron%20for%20channel%20estimation%20and%20signal%20detection%20in%20OFDM%20systems&rft.jtitle=Journal%20of%20optics%20(New%20Delhi)&rft.au=Rani,%20Meenu&rft.date=2023-03-01&rft.volume=52&rft.issue=1&rft.spage=69&rft.epage=76&rft.pages=69-76&rft.issn=0972-8821&rft.eissn=0974-6900&rft_id=info:doi/10.1007/s12596-022-00924-x&rft_dat=%3Cproquest_cross%3E2782223473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2782223473&rft_id=info:pmid/&rfr_iscdi=true