Climate warming causes photobiont degradation and carbon starvation in a boreal climate sentinel lichen

Premise The long‐term potential for acclimation by lichens to changing climates is poorly known, despite their prominent roles in forested ecosystems. Although often considered “extremophiles,” lichens may not readily acclimate to novel climates well beyond historical norms. In a previous study (Smi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of botany 2023-02, Vol.110 (2), p.e16114-n/a
Hauptverfasser: Meyer, Abigail R., Valentin, Maria, Liulevicius, Laima, McDonald, Tami R., Nelsen, Matthew P., Pengra, Jean, Smith, Robert J., Stanton, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e16114
container_title American journal of botany
container_volume 110
creator Meyer, Abigail R.
Valentin, Maria
Liulevicius, Laima
McDonald, Tami R.
Nelsen, Matthew P.
Pengra, Jean
Smith, Robert J.
Stanton, Daniel
description Premise The long‐term potential for acclimation by lichens to changing climates is poorly known, despite their prominent roles in forested ecosystems. Although often considered “extremophiles,” lichens may not readily acclimate to novel climates well beyond historical norms. In a previous study (Smith et al., 2018), Evernia mesomorpha transplants in a whole‐ecosystem climate change experiment showed drastic mass loss after 1 yr of warming and drying; however, the causes of this mass loss were not addressed. Methods We examined the causes of this warming‐induced mass loss by measuring physiological, functional, and reproductive attributes of lichen transplants. Results Severe loss of mass and physiological function occurred above +2°C of experimental warming. Loss of algal symbionts (“bleaching”) and turnover in algal community compositions increased with temperature and were the clearest impacts of experimental warming. Enhanced CO2 had no significant physiological or symbiont composition effects. The functional loss of algal photobionts led to significant loss of mass and specific thallus mass (STM), which in turn reduced water‐holding capacity (WHC). Although algal genotypes remained detectable in thalli exposed to higher stress, within‐thallus photobiont communities shifted in composition toward greater diversity. Conclusions The strong negative impacts of warming and/or lower humidity on Evernia mesomorpha were driven by a loss of photobiont activity. Analogous to the effects of climate change on corals, the balance of symbiont carbon metabolism in lichens is central to their resilience to changing conditions.
doi_str_mv 10.1002/ajb2.16114
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2781730646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781730646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3234-3f340caea854ed60a56dbdc33d6c595d4e2c8795669fb163d4e9f6bcacf253f83</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqWw4QOQJXZIKX7ETryEiqcqsYG15VdaV2lS7ISqf49LCktW9swcnbEvAJcYTTFC5FatNJlijnF-BMaY0SIjWBTHYIzSNBOYkBE4i3GVSpELcgpGlOecYIbHYDGr_Vp1Dm5VWPtmAY3qo4tws2y7Vvu26aB1i6Cs6lIBVWMTEXS6xk6Fr6Hr0wDqNjhVQ3PwRdd0vnE1rL1ZuuYcnFSqju7icE7Ax-PD--w5m789vczu5pmhhOYZrWiOjHKqZLmzHCnGrbaGUssNE8zmjpiyEIxzUWnMaWqIimujTEUYrUo6AdeDdxPaz97FTq7aPjRppSRFiQuK0tcTdTNQJrQxBlfJTUjPDjuJkdxnKveZyp9ME3x1UPZ67ewf-htiAvAAbH3tdv-o5N3rPRmk37-eggs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781730646</pqid></control><display><type>article</type><title>Climate warming causes photobiont degradation and carbon starvation in a boreal climate sentinel lichen</title><source>MEDLINE</source><source>Wiley Online Library</source><source>Wiley Free Archive</source><source>EZB Electronic Journals Library</source><creator>Meyer, Abigail R. ; Valentin, Maria ; Liulevicius, Laima ; McDonald, Tami R. ; Nelsen, Matthew P. ; Pengra, Jean ; Smith, Robert J. ; Stanton, Daniel</creator><creatorcontrib>Meyer, Abigail R. ; Valentin, Maria ; Liulevicius, Laima ; McDonald, Tami R. ; Nelsen, Matthew P. ; Pengra, Jean ; Smith, Robert J. ; Stanton, Daniel</creatorcontrib><description>Premise The long‐term potential for acclimation by lichens to changing climates is poorly known, despite their prominent roles in forested ecosystems. Although often considered “extremophiles,” lichens may not readily acclimate to novel climates well beyond historical norms. In a previous study (Smith et al., 2018), Evernia mesomorpha transplants in a whole‐ecosystem climate change experiment showed drastic mass loss after 1 yr of warming and drying; however, the causes of this mass loss were not addressed. Methods We examined the causes of this warming‐induced mass loss by measuring physiological, functional, and reproductive attributes of lichen transplants. Results Severe loss of mass and physiological function occurred above +2°C of experimental warming. Loss of algal symbionts (“bleaching”) and turnover in algal community compositions increased with temperature and were the clearest impacts of experimental warming. Enhanced CO2 had no significant physiological or symbiont composition effects. The functional loss of algal photobionts led to significant loss of mass and specific thallus mass (STM), which in turn reduced water‐holding capacity (WHC). Although algal genotypes remained detectable in thalli exposed to higher stress, within‐thallus photobiont communities shifted in composition toward greater diversity. Conclusions The strong negative impacts of warming and/or lower humidity on Evernia mesomorpha were driven by a loss of photobiont activity. Analogous to the effects of climate change on corals, the balance of symbiont carbon metabolism in lichens is central to their resilience to changing conditions.</description><identifier>ISSN: 0002-9122</identifier><identifier>EISSN: 1537-2197</identifier><identifier>DOI: 10.1002/ajb2.16114</identifier><identifier>PMID: 36462151</identifier><language>eng</language><publisher>United States: Botanical Society of America, Inc</publisher><subject>Acclimation ; Acclimatization ; Algae ; Bleaching ; boreal forest ; Carbon ; Carbon - metabolism ; Carbon dioxide ; Climate ; Climate change ; Climate effects ; Composition effects ; Corals ; Ecosystem ; Evernia mesomorpha ; Forest ecosystems ; Genotypes ; Global warming ; lichen physiology ; Lichens ; Lichens - metabolism ; Metabolism ; Norms ; Physiological effects ; Physiology ; Plants ; Symbionts ; Symbiosis ; Thalli ; Thallus ; Transplants ; Trebouxia</subject><ispartof>American journal of botany, 2023-02, Vol.110 (2), p.e16114-n/a</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC on behalf of Botanical Society of America.</rights><rights>2022 The Authors. American Journal of Botany published by Wiley Periodicals LLC on behalf of Botanical Society of America.</rights><rights>Copyright Botanical Society of America, Inc. Feb 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3234-3f340caea854ed60a56dbdc33d6c595d4e2c8795669fb163d4e9f6bcacf253f83</citedby><cites>FETCH-LOGICAL-c3234-3f340caea854ed60a56dbdc33d6c595d4e2c8795669fb163d4e9f6bcacf253f83</cites><orcidid>0000-0001-5085-634X ; 0000-0002-6713-9328 ; 0000-0002-6866-815X ; 0000-0002-7053-8987 ; 0000-0001-6375-1897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fajb2.16114$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fajb2.16114$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36462151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meyer, Abigail R.</creatorcontrib><creatorcontrib>Valentin, Maria</creatorcontrib><creatorcontrib>Liulevicius, Laima</creatorcontrib><creatorcontrib>McDonald, Tami R.</creatorcontrib><creatorcontrib>Nelsen, Matthew P.</creatorcontrib><creatorcontrib>Pengra, Jean</creatorcontrib><creatorcontrib>Smith, Robert J.</creatorcontrib><creatorcontrib>Stanton, Daniel</creatorcontrib><title>Climate warming causes photobiont degradation and carbon starvation in a boreal climate sentinel lichen</title><title>American journal of botany</title><addtitle>Am J Bot</addtitle><description>Premise The long‐term potential for acclimation by lichens to changing climates is poorly known, despite their prominent roles in forested ecosystems. Although often considered “extremophiles,” lichens may not readily acclimate to novel climates well beyond historical norms. In a previous study (Smith et al., 2018), Evernia mesomorpha transplants in a whole‐ecosystem climate change experiment showed drastic mass loss after 1 yr of warming and drying; however, the causes of this mass loss were not addressed. Methods We examined the causes of this warming‐induced mass loss by measuring physiological, functional, and reproductive attributes of lichen transplants. Results Severe loss of mass and physiological function occurred above +2°C of experimental warming. Loss of algal symbionts (“bleaching”) and turnover in algal community compositions increased with temperature and were the clearest impacts of experimental warming. Enhanced CO2 had no significant physiological or symbiont composition effects. The functional loss of algal photobionts led to significant loss of mass and specific thallus mass (STM), which in turn reduced water‐holding capacity (WHC). Although algal genotypes remained detectable in thalli exposed to higher stress, within‐thallus photobiont communities shifted in composition toward greater diversity. Conclusions The strong negative impacts of warming and/or lower humidity on Evernia mesomorpha were driven by a loss of photobiont activity. Analogous to the effects of climate change on corals, the balance of symbiont carbon metabolism in lichens is central to their resilience to changing conditions.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Algae</subject><subject>Bleaching</subject><subject>boreal forest</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Carbon dioxide</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate effects</subject><subject>Composition effects</subject><subject>Corals</subject><subject>Ecosystem</subject><subject>Evernia mesomorpha</subject><subject>Forest ecosystems</subject><subject>Genotypes</subject><subject>Global warming</subject><subject>lichen physiology</subject><subject>Lichens</subject><subject>Lichens - metabolism</subject><subject>Metabolism</subject><subject>Norms</subject><subject>Physiological effects</subject><subject>Physiology</subject><subject>Plants</subject><subject>Symbionts</subject><subject>Symbiosis</subject><subject>Thalli</subject><subject>Thallus</subject><subject>Transplants</subject><subject>Trebouxia</subject><issn>0002-9122</issn><issn>1537-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqWw4QOQJXZIKX7ETryEiqcqsYG15VdaV2lS7ISqf49LCktW9swcnbEvAJcYTTFC5FatNJlijnF-BMaY0SIjWBTHYIzSNBOYkBE4i3GVSpELcgpGlOecYIbHYDGr_Vp1Dm5VWPtmAY3qo4tws2y7Vvu26aB1i6Cs6lIBVWMTEXS6xk6Fr6Hr0wDqNjhVQ3PwRdd0vnE1rL1ZuuYcnFSqju7icE7Ax-PD--w5m789vczu5pmhhOYZrWiOjHKqZLmzHCnGrbaGUssNE8zmjpiyEIxzUWnMaWqIimujTEUYrUo6AdeDdxPaz97FTq7aPjRppSRFiQuK0tcTdTNQJrQxBlfJTUjPDjuJkdxnKveZyp9ME3x1UPZ67ewf-htiAvAAbH3tdv-o5N3rPRmk37-eggs</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Meyer, Abigail R.</creator><creator>Valentin, Maria</creator><creator>Liulevicius, Laima</creator><creator>McDonald, Tami R.</creator><creator>Nelsen, Matthew P.</creator><creator>Pengra, Jean</creator><creator>Smith, Robert J.</creator><creator>Stanton, Daniel</creator><general>Botanical Society of America, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5085-634X</orcidid><orcidid>https://orcid.org/0000-0002-6713-9328</orcidid><orcidid>https://orcid.org/0000-0002-6866-815X</orcidid><orcidid>https://orcid.org/0000-0002-7053-8987</orcidid><orcidid>https://orcid.org/0000-0001-6375-1897</orcidid></search><sort><creationdate>202302</creationdate><title>Climate warming causes photobiont degradation and carbon starvation in a boreal climate sentinel lichen</title><author>Meyer, Abigail R. ; Valentin, Maria ; Liulevicius, Laima ; McDonald, Tami R. ; Nelsen, Matthew P. ; Pengra, Jean ; Smith, Robert J. ; Stanton, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3234-3f340caea854ed60a56dbdc33d6c595d4e2c8795669fb163d4e9f6bcacf253f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Algae</topic><topic>Bleaching</topic><topic>boreal forest</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Carbon dioxide</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate effects</topic><topic>Composition effects</topic><topic>Corals</topic><topic>Ecosystem</topic><topic>Evernia mesomorpha</topic><topic>Forest ecosystems</topic><topic>Genotypes</topic><topic>Global warming</topic><topic>lichen physiology</topic><topic>Lichens</topic><topic>Lichens - metabolism</topic><topic>Metabolism</topic><topic>Norms</topic><topic>Physiological effects</topic><topic>Physiology</topic><topic>Plants</topic><topic>Symbionts</topic><topic>Symbiosis</topic><topic>Thalli</topic><topic>Thallus</topic><topic>Transplants</topic><topic>Trebouxia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyer, Abigail R.</creatorcontrib><creatorcontrib>Valentin, Maria</creatorcontrib><creatorcontrib>Liulevicius, Laima</creatorcontrib><creatorcontrib>McDonald, Tami R.</creatorcontrib><creatorcontrib>Nelsen, Matthew P.</creatorcontrib><creatorcontrib>Pengra, Jean</creatorcontrib><creatorcontrib>Smith, Robert J.</creatorcontrib><creatorcontrib>Stanton, Daniel</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Free Archive</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>American journal of botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyer, Abigail R.</au><au>Valentin, Maria</au><au>Liulevicius, Laima</au><au>McDonald, Tami R.</au><au>Nelsen, Matthew P.</au><au>Pengra, Jean</au><au>Smith, Robert J.</au><au>Stanton, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Climate warming causes photobiont degradation and carbon starvation in a boreal climate sentinel lichen</atitle><jtitle>American journal of botany</jtitle><addtitle>Am J Bot</addtitle><date>2023-02</date><risdate>2023</risdate><volume>110</volume><issue>2</issue><spage>e16114</spage><epage>n/a</epage><pages>e16114-n/a</pages><issn>0002-9122</issn><eissn>1537-2197</eissn><abstract>Premise The long‐term potential for acclimation by lichens to changing climates is poorly known, despite their prominent roles in forested ecosystems. Although often considered “extremophiles,” lichens may not readily acclimate to novel climates well beyond historical norms. In a previous study (Smith et al., 2018), Evernia mesomorpha transplants in a whole‐ecosystem climate change experiment showed drastic mass loss after 1 yr of warming and drying; however, the causes of this mass loss were not addressed. Methods We examined the causes of this warming‐induced mass loss by measuring physiological, functional, and reproductive attributes of lichen transplants. Results Severe loss of mass and physiological function occurred above +2°C of experimental warming. Loss of algal symbionts (“bleaching”) and turnover in algal community compositions increased with temperature and were the clearest impacts of experimental warming. Enhanced CO2 had no significant physiological or symbiont composition effects. The functional loss of algal photobionts led to significant loss of mass and specific thallus mass (STM), which in turn reduced water‐holding capacity (WHC). Although algal genotypes remained detectable in thalli exposed to higher stress, within‐thallus photobiont communities shifted in composition toward greater diversity. Conclusions The strong negative impacts of warming and/or lower humidity on Evernia mesomorpha were driven by a loss of photobiont activity. Analogous to the effects of climate change on corals, the balance of symbiont carbon metabolism in lichens is central to their resilience to changing conditions.</abstract><cop>United States</cop><pub>Botanical Society of America, Inc</pub><pmid>36462151</pmid><doi>10.1002/ajb2.16114</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5085-634X</orcidid><orcidid>https://orcid.org/0000-0002-6713-9328</orcidid><orcidid>https://orcid.org/0000-0002-6866-815X</orcidid><orcidid>https://orcid.org/0000-0002-7053-8987</orcidid><orcidid>https://orcid.org/0000-0001-6375-1897</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9122
ispartof American journal of botany, 2023-02, Vol.110 (2), p.e16114-n/a
issn 0002-9122
1537-2197
language eng
recordid cdi_proquest_journals_2781730646
source MEDLINE; Wiley Online Library; Wiley Free Archive; EZB Electronic Journals Library
subjects Acclimation
Acclimatization
Algae
Bleaching
boreal forest
Carbon
Carbon - metabolism
Carbon dioxide
Climate
Climate change
Climate effects
Composition effects
Corals
Ecosystem
Evernia mesomorpha
Forest ecosystems
Genotypes
Global warming
lichen physiology
Lichens
Lichens - metabolism
Metabolism
Norms
Physiological effects
Physiology
Plants
Symbionts
Symbiosis
Thalli
Thallus
Transplants
Trebouxia
title Climate warming causes photobiont degradation and carbon starvation in a boreal climate sentinel lichen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A25%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Climate%20warming%20causes%20photobiont%20degradation%20and%20carbon%20starvation%20in%20a%20boreal%20climate%20sentinel%20lichen&rft.jtitle=American%20journal%20of%20botany&rft.au=Meyer,%20Abigail%20R.&rft.date=2023-02&rft.volume=110&rft.issue=2&rft.spage=e16114&rft.epage=n/a&rft.pages=e16114-n/a&rft.issn=0002-9122&rft.eissn=1537-2197&rft_id=info:doi/10.1002/ajb2.16114&rft_dat=%3Cproquest_cross%3E2781730646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2781730646&rft_id=info:pmid/36462151&rfr_iscdi=true