Climate warming causes photobiont degradation and carbon starvation in a boreal climate sentinel lichen
Premise The long‐term potential for acclimation by lichens to changing climates is poorly known, despite their prominent roles in forested ecosystems. Although often considered “extremophiles,” lichens may not readily acclimate to novel climates well beyond historical norms. In a previous study (Smi...
Gespeichert in:
Veröffentlicht in: | American journal of botany 2023-02, Vol.110 (2), p.e16114-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | e16114 |
container_title | American journal of botany |
container_volume | 110 |
creator | Meyer, Abigail R. Valentin, Maria Liulevicius, Laima McDonald, Tami R. Nelsen, Matthew P. Pengra, Jean Smith, Robert J. Stanton, Daniel |
description | Premise
The long‐term potential for acclimation by lichens to changing climates is poorly known, despite their prominent roles in forested ecosystems. Although often considered “extremophiles,” lichens may not readily acclimate to novel climates well beyond historical norms. In a previous study (Smith et al., 2018), Evernia mesomorpha transplants in a whole‐ecosystem climate change experiment showed drastic mass loss after 1 yr of warming and drying; however, the causes of this mass loss were not addressed.
Methods
We examined the causes of this warming‐induced mass loss by measuring physiological, functional, and reproductive attributes of lichen transplants.
Results
Severe loss of mass and physiological function occurred above +2°C of experimental warming. Loss of algal symbionts (“bleaching”) and turnover in algal community compositions increased with temperature and were the clearest impacts of experimental warming. Enhanced CO2 had no significant physiological or symbiont composition effects. The functional loss of algal photobionts led to significant loss of mass and specific thallus mass (STM), which in turn reduced water‐holding capacity (WHC). Although algal genotypes remained detectable in thalli exposed to higher stress, within‐thallus photobiont communities shifted in composition toward greater diversity.
Conclusions
The strong negative impacts of warming and/or lower humidity on Evernia mesomorpha were driven by a loss of photobiont activity. Analogous to the effects of climate change on corals, the balance of symbiont carbon metabolism in lichens is central to their resilience to changing conditions. |
doi_str_mv | 10.1002/ajb2.16114 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2781730646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781730646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3234-3f340caea854ed60a56dbdc33d6c595d4e2c8795669fb163d4e9f6bcacf253f83</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqWw4QOQJXZIKX7ETryEiqcqsYG15VdaV2lS7ISqf49LCktW9swcnbEvAJcYTTFC5FatNJlijnF-BMaY0SIjWBTHYIzSNBOYkBE4i3GVSpELcgpGlOecYIbHYDGr_Vp1Dm5VWPtmAY3qo4tws2y7Vvu26aB1i6Cs6lIBVWMTEXS6xk6Fr6Hr0wDqNjhVQ3PwRdd0vnE1rL1ZuuYcnFSqju7icE7Ax-PD--w5m789vczu5pmhhOYZrWiOjHKqZLmzHCnGrbaGUssNE8zmjpiyEIxzUWnMaWqIimujTEUYrUo6AdeDdxPaz97FTq7aPjRppSRFiQuK0tcTdTNQJrQxBlfJTUjPDjuJkdxnKveZyp9ME3x1UPZ67ewf-htiAvAAbH3tdv-o5N3rPRmk37-eggs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781730646</pqid></control><display><type>article</type><title>Climate warming causes photobiont degradation and carbon starvation in a boreal climate sentinel lichen</title><source>MEDLINE</source><source>Wiley Online Library</source><source>Wiley Free Archive</source><source>EZB Electronic Journals Library</source><creator>Meyer, Abigail R. ; Valentin, Maria ; Liulevicius, Laima ; McDonald, Tami R. ; Nelsen, Matthew P. ; Pengra, Jean ; Smith, Robert J. ; Stanton, Daniel</creator><creatorcontrib>Meyer, Abigail R. ; Valentin, Maria ; Liulevicius, Laima ; McDonald, Tami R. ; Nelsen, Matthew P. ; Pengra, Jean ; Smith, Robert J. ; Stanton, Daniel</creatorcontrib><description>Premise
The long‐term potential for acclimation by lichens to changing climates is poorly known, despite their prominent roles in forested ecosystems. Although often considered “extremophiles,” lichens may not readily acclimate to novel climates well beyond historical norms. In a previous study (Smith et al., 2018), Evernia mesomorpha transplants in a whole‐ecosystem climate change experiment showed drastic mass loss after 1 yr of warming and drying; however, the causes of this mass loss were not addressed.
Methods
We examined the causes of this warming‐induced mass loss by measuring physiological, functional, and reproductive attributes of lichen transplants.
Results
Severe loss of mass and physiological function occurred above +2°C of experimental warming. Loss of algal symbionts (“bleaching”) and turnover in algal community compositions increased with temperature and were the clearest impacts of experimental warming. Enhanced CO2 had no significant physiological or symbiont composition effects. The functional loss of algal photobionts led to significant loss of mass and specific thallus mass (STM), which in turn reduced water‐holding capacity (WHC). Although algal genotypes remained detectable in thalli exposed to higher stress, within‐thallus photobiont communities shifted in composition toward greater diversity.
Conclusions
The strong negative impacts of warming and/or lower humidity on Evernia mesomorpha were driven by a loss of photobiont activity. Analogous to the effects of climate change on corals, the balance of symbiont carbon metabolism in lichens is central to their resilience to changing conditions.</description><identifier>ISSN: 0002-9122</identifier><identifier>EISSN: 1537-2197</identifier><identifier>DOI: 10.1002/ajb2.16114</identifier><identifier>PMID: 36462151</identifier><language>eng</language><publisher>United States: Botanical Society of America, Inc</publisher><subject>Acclimation ; Acclimatization ; Algae ; Bleaching ; boreal forest ; Carbon ; Carbon - metabolism ; Carbon dioxide ; Climate ; Climate change ; Climate effects ; Composition effects ; Corals ; Ecosystem ; Evernia mesomorpha ; Forest ecosystems ; Genotypes ; Global warming ; lichen physiology ; Lichens ; Lichens - metabolism ; Metabolism ; Norms ; Physiological effects ; Physiology ; Plants ; Symbionts ; Symbiosis ; Thalli ; Thallus ; Transplants ; Trebouxia</subject><ispartof>American journal of botany, 2023-02, Vol.110 (2), p.e16114-n/a</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC on behalf of Botanical Society of America.</rights><rights>2022 The Authors. American Journal of Botany published by Wiley Periodicals LLC on behalf of Botanical Society of America.</rights><rights>Copyright Botanical Society of America, Inc. Feb 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3234-3f340caea854ed60a56dbdc33d6c595d4e2c8795669fb163d4e9f6bcacf253f83</citedby><cites>FETCH-LOGICAL-c3234-3f340caea854ed60a56dbdc33d6c595d4e2c8795669fb163d4e9f6bcacf253f83</cites><orcidid>0000-0001-5085-634X ; 0000-0002-6713-9328 ; 0000-0002-6866-815X ; 0000-0002-7053-8987 ; 0000-0001-6375-1897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fajb2.16114$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fajb2.16114$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36462151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meyer, Abigail R.</creatorcontrib><creatorcontrib>Valentin, Maria</creatorcontrib><creatorcontrib>Liulevicius, Laima</creatorcontrib><creatorcontrib>McDonald, Tami R.</creatorcontrib><creatorcontrib>Nelsen, Matthew P.</creatorcontrib><creatorcontrib>Pengra, Jean</creatorcontrib><creatorcontrib>Smith, Robert J.</creatorcontrib><creatorcontrib>Stanton, Daniel</creatorcontrib><title>Climate warming causes photobiont degradation and carbon starvation in a boreal climate sentinel lichen</title><title>American journal of botany</title><addtitle>Am J Bot</addtitle><description>Premise
The long‐term potential for acclimation by lichens to changing climates is poorly known, despite their prominent roles in forested ecosystems. Although often considered “extremophiles,” lichens may not readily acclimate to novel climates well beyond historical norms. In a previous study (Smith et al., 2018), Evernia mesomorpha transplants in a whole‐ecosystem climate change experiment showed drastic mass loss after 1 yr of warming and drying; however, the causes of this mass loss were not addressed.
Methods
We examined the causes of this warming‐induced mass loss by measuring physiological, functional, and reproductive attributes of lichen transplants.
Results
Severe loss of mass and physiological function occurred above +2°C of experimental warming. Loss of algal symbionts (“bleaching”) and turnover in algal community compositions increased with temperature and were the clearest impacts of experimental warming. Enhanced CO2 had no significant physiological or symbiont composition effects. The functional loss of algal photobionts led to significant loss of mass and specific thallus mass (STM), which in turn reduced water‐holding capacity (WHC). Although algal genotypes remained detectable in thalli exposed to higher stress, within‐thallus photobiont communities shifted in composition toward greater diversity.
Conclusions
The strong negative impacts of warming and/or lower humidity on Evernia mesomorpha were driven by a loss of photobiont activity. Analogous to the effects of climate change on corals, the balance of symbiont carbon metabolism in lichens is central to their resilience to changing conditions.</description><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Algae</subject><subject>Bleaching</subject><subject>boreal forest</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Carbon dioxide</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate effects</subject><subject>Composition effects</subject><subject>Corals</subject><subject>Ecosystem</subject><subject>Evernia mesomorpha</subject><subject>Forest ecosystems</subject><subject>Genotypes</subject><subject>Global warming</subject><subject>lichen physiology</subject><subject>Lichens</subject><subject>Lichens - metabolism</subject><subject>Metabolism</subject><subject>Norms</subject><subject>Physiological effects</subject><subject>Physiology</subject><subject>Plants</subject><subject>Symbionts</subject><subject>Symbiosis</subject><subject>Thalli</subject><subject>Thallus</subject><subject>Transplants</subject><subject>Trebouxia</subject><issn>0002-9122</issn><issn>1537-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqWw4QOQJXZIKX7ETryEiqcqsYG15VdaV2lS7ISqf49LCktW9swcnbEvAJcYTTFC5FatNJlijnF-BMaY0SIjWBTHYIzSNBOYkBE4i3GVSpELcgpGlOecYIbHYDGr_Vp1Dm5VWPtmAY3qo4tws2y7Vvu26aB1i6Cs6lIBVWMTEXS6xk6Fr6Hr0wDqNjhVQ3PwRdd0vnE1rL1ZuuYcnFSqju7icE7Ax-PD--w5m789vczu5pmhhOYZrWiOjHKqZLmzHCnGrbaGUssNE8zmjpiyEIxzUWnMaWqIimujTEUYrUo6AdeDdxPaz97FTq7aPjRppSRFiQuK0tcTdTNQJrQxBlfJTUjPDjuJkdxnKveZyp9ME3x1UPZ67ewf-htiAvAAbH3tdv-o5N3rPRmk37-eggs</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Meyer, Abigail R.</creator><creator>Valentin, Maria</creator><creator>Liulevicius, Laima</creator><creator>McDonald, Tami R.</creator><creator>Nelsen, Matthew P.</creator><creator>Pengra, Jean</creator><creator>Smith, Robert J.</creator><creator>Stanton, Daniel</creator><general>Botanical Society of America, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5085-634X</orcidid><orcidid>https://orcid.org/0000-0002-6713-9328</orcidid><orcidid>https://orcid.org/0000-0002-6866-815X</orcidid><orcidid>https://orcid.org/0000-0002-7053-8987</orcidid><orcidid>https://orcid.org/0000-0001-6375-1897</orcidid></search><sort><creationdate>202302</creationdate><title>Climate warming causes photobiont degradation and carbon starvation in a boreal climate sentinel lichen</title><author>Meyer, Abigail R. ; Valentin, Maria ; Liulevicius, Laima ; McDonald, Tami R. ; Nelsen, Matthew P. ; Pengra, Jean ; Smith, Robert J. ; Stanton, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3234-3f340caea854ed60a56dbdc33d6c595d4e2c8795669fb163d4e9f6bcacf253f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Algae</topic><topic>Bleaching</topic><topic>boreal forest</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Carbon dioxide</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate effects</topic><topic>Composition effects</topic><topic>Corals</topic><topic>Ecosystem</topic><topic>Evernia mesomorpha</topic><topic>Forest ecosystems</topic><topic>Genotypes</topic><topic>Global warming</topic><topic>lichen physiology</topic><topic>Lichens</topic><topic>Lichens - metabolism</topic><topic>Metabolism</topic><topic>Norms</topic><topic>Physiological effects</topic><topic>Physiology</topic><topic>Plants</topic><topic>Symbionts</topic><topic>Symbiosis</topic><topic>Thalli</topic><topic>Thallus</topic><topic>Transplants</topic><topic>Trebouxia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyer, Abigail R.</creatorcontrib><creatorcontrib>Valentin, Maria</creatorcontrib><creatorcontrib>Liulevicius, Laima</creatorcontrib><creatorcontrib>McDonald, Tami R.</creatorcontrib><creatorcontrib>Nelsen, Matthew P.</creatorcontrib><creatorcontrib>Pengra, Jean</creatorcontrib><creatorcontrib>Smith, Robert J.</creatorcontrib><creatorcontrib>Stanton, Daniel</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Free Archive</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>American journal of botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyer, Abigail R.</au><au>Valentin, Maria</au><au>Liulevicius, Laima</au><au>McDonald, Tami R.</au><au>Nelsen, Matthew P.</au><au>Pengra, Jean</au><au>Smith, Robert J.</au><au>Stanton, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Climate warming causes photobiont degradation and carbon starvation in a boreal climate sentinel lichen</atitle><jtitle>American journal of botany</jtitle><addtitle>Am J Bot</addtitle><date>2023-02</date><risdate>2023</risdate><volume>110</volume><issue>2</issue><spage>e16114</spage><epage>n/a</epage><pages>e16114-n/a</pages><issn>0002-9122</issn><eissn>1537-2197</eissn><abstract>Premise
The long‐term potential for acclimation by lichens to changing climates is poorly known, despite their prominent roles in forested ecosystems. Although often considered “extremophiles,” lichens may not readily acclimate to novel climates well beyond historical norms. In a previous study (Smith et al., 2018), Evernia mesomorpha transplants in a whole‐ecosystem climate change experiment showed drastic mass loss after 1 yr of warming and drying; however, the causes of this mass loss were not addressed.
Methods
We examined the causes of this warming‐induced mass loss by measuring physiological, functional, and reproductive attributes of lichen transplants.
Results
Severe loss of mass and physiological function occurred above +2°C of experimental warming. Loss of algal symbionts (“bleaching”) and turnover in algal community compositions increased with temperature and were the clearest impacts of experimental warming. Enhanced CO2 had no significant physiological or symbiont composition effects. The functional loss of algal photobionts led to significant loss of mass and specific thallus mass (STM), which in turn reduced water‐holding capacity (WHC). Although algal genotypes remained detectable in thalli exposed to higher stress, within‐thallus photobiont communities shifted in composition toward greater diversity.
Conclusions
The strong negative impacts of warming and/or lower humidity on Evernia mesomorpha were driven by a loss of photobiont activity. Analogous to the effects of climate change on corals, the balance of symbiont carbon metabolism in lichens is central to their resilience to changing conditions.</abstract><cop>United States</cop><pub>Botanical Society of America, Inc</pub><pmid>36462151</pmid><doi>10.1002/ajb2.16114</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5085-634X</orcidid><orcidid>https://orcid.org/0000-0002-6713-9328</orcidid><orcidid>https://orcid.org/0000-0002-6866-815X</orcidid><orcidid>https://orcid.org/0000-0002-7053-8987</orcidid><orcidid>https://orcid.org/0000-0001-6375-1897</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9122 |
ispartof | American journal of botany, 2023-02, Vol.110 (2), p.e16114-n/a |
issn | 0002-9122 1537-2197 |
language | eng |
recordid | cdi_proquest_journals_2781730646 |
source | MEDLINE; Wiley Online Library; Wiley Free Archive; EZB Electronic Journals Library |
subjects | Acclimation Acclimatization Algae Bleaching boreal forest Carbon Carbon - metabolism Carbon dioxide Climate Climate change Climate effects Composition effects Corals Ecosystem Evernia mesomorpha Forest ecosystems Genotypes Global warming lichen physiology Lichens Lichens - metabolism Metabolism Norms Physiological effects Physiology Plants Symbionts Symbiosis Thalli Thallus Transplants Trebouxia |
title | Climate warming causes photobiont degradation and carbon starvation in a boreal climate sentinel lichen |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A25%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Climate%20warming%20causes%20photobiont%20degradation%20and%20carbon%20starvation%20in%20a%20boreal%20climate%20sentinel%20lichen&rft.jtitle=American%20journal%20of%20botany&rft.au=Meyer,%20Abigail%20R.&rft.date=2023-02&rft.volume=110&rft.issue=2&rft.spage=e16114&rft.epage=n/a&rft.pages=e16114-n/a&rft.issn=0002-9122&rft.eissn=1537-2197&rft_id=info:doi/10.1002/ajb2.16114&rft_dat=%3Cproquest_cross%3E2781730646%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2781730646&rft_id=info:pmid/36462151&rfr_iscdi=true |