Artificial Intelligence and Machine Learning for Job Automation: A Review and Integration
Job automation is a critical decision that has brought about profound changes in the workplace. However, the question of what drives job automation remains unclear. This study conducts an interdisciplinary review of five theoretical frameworks on job automation, paying particular attention to the ro...
Gespeichert in:
Veröffentlicht in: | Journal of database management 2023-01, Vol.34 (1), p.1-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of database management |
container_volume | 34 |
creator | Bhaskar, Rahul Peng, Gang |
description | Job automation is a critical decision that has brought about profound changes in the workplace. However, the question of what drives job automation remains unclear. This study conducts an interdisciplinary review of five theoretical frameworks on job automation, paying particular attention to the role played by artificial intelligence and machine learning. It highlights the concepts and mechanisms underlying each of the frameworks, compares and contrasts their similarities and differences, and highlights challenges and suggests opportunities of job automation. It also proposes an integrated framework on job automation by addressing the research gaps in extant frameworks and thereby contributes to the research and practice on this important topic. |
doi_str_mv | 10.4018/JDM.318455 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2781729598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759221126</galeid><sourcerecordid>A759221126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-d6466cf6c616f81f8b0131b1914326ed9c3a829c72868bd0563cb053774108853</originalsourceid><addsrcrecordid>eNptkc1q3DAUhU1Jocm0mz6BoLsQT3QtS5azM0nzxwyF0i66ErIsOQoeKZHslr59lHFgMjAIpIv0nXPRPVn2FfCyxMDP76_WSwK8pPRDdgyUkJxjwEepxmxbs0_ZSYyPGAOFqjjO_jRhtMYqKwd050Y9DLbXTmkkXYfWUj1Yp9FKy-Cs65HxAd37FjXT6DdytN5doAb91H-t_rdVvFr0YfvyOfto5BD1l7dzkf2-_v7r8jZf_bi5u2xWuSIlH_OOlYwpwxQDZjgY3mIg0EINJSmY7mpFJC9qVRWc8bbDlBHVYkqqqgTMOSWL7Nvs-xT886TjKB79FFxqKYqKp0_WtOY7qpeDFtYZPwapNjYq0VS0LgqAgiUqP0ClgeggB--0sel6j18e4NPq9Maqg4Kzd4J2imm8MW3R9g9j7OUU4z5-OuMq-BiDNuIp2I0M_wVg8Rq4SIGLOfAENzNse7ubwZyteJ-tSEmJ9QGHkrwAmwWu-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781729598</pqid></control><display><type>article</type><title>Artificial Intelligence and Machine Learning for Job Automation: A Review and Integration</title><source>Alma/SFX Local Collection</source><creator>Bhaskar, Rahul ; Peng, Gang</creator><creatorcontrib>Bhaskar, Rahul ; Peng, Gang</creatorcontrib><description>Job automation is a critical decision that has brought about profound changes in the workplace. However, the question of what drives job automation remains unclear. This study conducts an interdisciplinary review of five theoretical frameworks on job automation, paying particular attention to the role played by artificial intelligence and machine learning. It highlights the concepts and mechanisms underlying each of the frameworks, compares and contrasts their similarities and differences, and highlights challenges and suggests opportunities of job automation. It also proposes an integrated framework on job automation by addressing the research gaps in extant frameworks and thereby contributes to the research and practice on this important topic.</description><identifier>ISSN: 1063-8016</identifier><identifier>EISSN: 1533-8010</identifier><identifier>DOI: 10.4018/JDM.318455</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Artificial intelligence ; Automation ; Computational linguistics ; Data base management ; Language processing ; Machine learning ; Natural language interfaces ; Simon, Herbert Alexander</subject><ispartof>Journal of database management, 2023-01, Vol.34 (1), p.1-12</ispartof><rights>COPYRIGHT 2023 IGI Global</rights><rights>2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-d6466cf6c616f81f8b0131b1914326ed9c3a829c72868bd0563cb053774108853</cites><orcidid>0000-0001-8773-002X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Bhaskar, Rahul</creatorcontrib><creatorcontrib>Peng, Gang</creatorcontrib><title>Artificial Intelligence and Machine Learning for Job Automation: A Review and Integration</title><title>Journal of database management</title><description>Job automation is a critical decision that has brought about profound changes in the workplace. However, the question of what drives job automation remains unclear. This study conducts an interdisciplinary review of five theoretical frameworks on job automation, paying particular attention to the role played by artificial intelligence and machine learning. It highlights the concepts and mechanisms underlying each of the frameworks, compares and contrasts their similarities and differences, and highlights challenges and suggests opportunities of job automation. It also proposes an integrated framework on job automation by addressing the research gaps in extant frameworks and thereby contributes to the research and practice on this important topic.</description><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Computational linguistics</subject><subject>Data base management</subject><subject>Language processing</subject><subject>Machine learning</subject><subject>Natural language interfaces</subject><subject>Simon, Herbert Alexander</subject><issn>1063-8016</issn><issn>1533-8010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkc1q3DAUhU1Jocm0mz6BoLsQT3QtS5azM0nzxwyF0i66ErIsOQoeKZHslr59lHFgMjAIpIv0nXPRPVn2FfCyxMDP76_WSwK8pPRDdgyUkJxjwEepxmxbs0_ZSYyPGAOFqjjO_jRhtMYqKwd050Y9DLbXTmkkXYfWUj1Yp9FKy-Cs65HxAd37FjXT6DdytN5doAb91H-t_rdVvFr0YfvyOfto5BD1l7dzkf2-_v7r8jZf_bi5u2xWuSIlH_OOlYwpwxQDZjgY3mIg0EINJSmY7mpFJC9qVRWc8bbDlBHVYkqqqgTMOSWL7Nvs-xT886TjKB79FFxqKYqKp0_WtOY7qpeDFtYZPwapNjYq0VS0LgqAgiUqP0ClgeggB--0sel6j18e4NPq9Maqg4Kzd4J2imm8MW3R9g9j7OUU4z5-OuMq-BiDNuIp2I0M_wVg8Rq4SIGLOfAENzNse7ubwZyteJ-tSEmJ9QGHkrwAmwWu-Q</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Bhaskar, Rahul</creator><creator>Peng, Gang</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88K</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>M2T</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8773-002X</orcidid></search><sort><creationdate>20230101</creationdate><title>Artificial Intelligence and Machine Learning for Job Automation: A Review and Integration</title><author>Bhaskar, Rahul ; Peng, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-d6466cf6c616f81f8b0131b1914326ed9c3a829c72868bd0563cb053774108853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Computational linguistics</topic><topic>Data base management</topic><topic>Language processing</topic><topic>Machine learning</topic><topic>Natural language interfaces</topic><topic>Simon, Herbert Alexander</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhaskar, Rahul</creatorcontrib><creatorcontrib>Peng, Gang</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of database management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhaskar, Rahul</au><au>Peng, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence and Machine Learning for Job Automation: A Review and Integration</atitle><jtitle>Journal of database management</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>34</volume><issue>1</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1063-8016</issn><eissn>1533-8010</eissn><abstract>Job automation is a critical decision that has brought about profound changes in the workplace. However, the question of what drives job automation remains unclear. This study conducts an interdisciplinary review of five theoretical frameworks on job automation, paying particular attention to the role played by artificial intelligence and machine learning. It highlights the concepts and mechanisms underlying each of the frameworks, compares and contrasts their similarities and differences, and highlights challenges and suggests opportunities of job automation. It also proposes an integrated framework on job automation by addressing the research gaps in extant frameworks and thereby contributes to the research and practice on this important topic.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/JDM.318455</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8773-002X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-8016 |
ispartof | Journal of database management, 2023-01, Vol.34 (1), p.1-12 |
issn | 1063-8016 1533-8010 |
language | eng |
recordid | cdi_proquest_journals_2781729598 |
source | Alma/SFX Local Collection |
subjects | Artificial intelligence Automation Computational linguistics Data base management Language processing Machine learning Natural language interfaces Simon, Herbert Alexander |
title | Artificial Intelligence and Machine Learning for Job Automation: A Review and Integration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20and%20Machine%20Learning%20for%20Job%20Automation:%20A%20Review%20and%20Integration&rft.jtitle=Journal%20of%20database%20management&rft.au=Bhaskar,%20Rahul&rft.date=2023-01-01&rft.volume=34&rft.issue=1&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1063-8016&rft.eissn=1533-8010&rft_id=info:doi/10.4018/JDM.318455&rft_dat=%3Cgale_proqu%3EA759221126%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2781729598&rft_id=info:pmid/&rft_galeid=A759221126&rfr_iscdi=true |