Artificial Intelligence and Machine Learning for Job Automation: A Review and Integration

Job automation is a critical decision that has brought about profound changes in the workplace. However, the question of what drives job automation remains unclear. This study conducts an interdisciplinary review of five theoretical frameworks on job automation, paying particular attention to the ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of database management 2023-01, Vol.34 (1), p.1-12
Hauptverfasser: Bhaskar, Rahul, Peng, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 1
container_title Journal of database management
container_volume 34
creator Bhaskar, Rahul
Peng, Gang
description Job automation is a critical decision that has brought about profound changes in the workplace. However, the question of what drives job automation remains unclear. This study conducts an interdisciplinary review of five theoretical frameworks on job automation, paying particular attention to the role played by artificial intelligence and machine learning. It highlights the concepts and mechanisms underlying each of the frameworks, compares and contrasts their similarities and differences, and highlights challenges and suggests opportunities of job automation. It also proposes an integrated framework on job automation by addressing the research gaps in extant frameworks and thereby contributes to the research and practice on this important topic.
doi_str_mv 10.4018/JDM.318455
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2781729598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759221126</galeid><sourcerecordid>A759221126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-d6466cf6c616f81f8b0131b1914326ed9c3a829c72868bd0563cb053774108853</originalsourceid><addsrcrecordid>eNptkc1q3DAUhU1Jocm0mz6BoLsQT3QtS5azM0nzxwyF0i66ErIsOQoeKZHslr59lHFgMjAIpIv0nXPRPVn2FfCyxMDP76_WSwK8pPRDdgyUkJxjwEepxmxbs0_ZSYyPGAOFqjjO_jRhtMYqKwd050Y9DLbXTmkkXYfWUj1Yp9FKy-Cs65HxAd37FjXT6DdytN5doAb91H-t_rdVvFr0YfvyOfto5BD1l7dzkf2-_v7r8jZf_bi5u2xWuSIlH_OOlYwpwxQDZjgY3mIg0EINJSmY7mpFJC9qVRWc8bbDlBHVYkqqqgTMOSWL7Nvs-xT886TjKB79FFxqKYqKp0_WtOY7qpeDFtYZPwapNjYq0VS0LgqAgiUqP0ClgeggB--0sel6j18e4NPq9Maqg4Kzd4J2imm8MW3R9g9j7OUU4z5-OuMq-BiDNuIp2I0M_wVg8Rq4SIGLOfAENzNse7ubwZyteJ-tSEmJ9QGHkrwAmwWu-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781729598</pqid></control><display><type>article</type><title>Artificial Intelligence and Machine Learning for Job Automation: A Review and Integration</title><source>Alma/SFX Local Collection</source><creator>Bhaskar, Rahul ; Peng, Gang</creator><creatorcontrib>Bhaskar, Rahul ; Peng, Gang</creatorcontrib><description>Job automation is a critical decision that has brought about profound changes in the workplace. However, the question of what drives job automation remains unclear. This study conducts an interdisciplinary review of five theoretical frameworks on job automation, paying particular attention to the role played by artificial intelligence and machine learning. It highlights the concepts and mechanisms underlying each of the frameworks, compares and contrasts their similarities and differences, and highlights challenges and suggests opportunities of job automation. It also proposes an integrated framework on job automation by addressing the research gaps in extant frameworks and thereby contributes to the research and practice on this important topic.</description><identifier>ISSN: 1063-8016</identifier><identifier>EISSN: 1533-8010</identifier><identifier>DOI: 10.4018/JDM.318455</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Artificial intelligence ; Automation ; Computational linguistics ; Data base management ; Language processing ; Machine learning ; Natural language interfaces ; Simon, Herbert Alexander</subject><ispartof>Journal of database management, 2023-01, Vol.34 (1), p.1-12</ispartof><rights>COPYRIGHT 2023 IGI Global</rights><rights>2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-d6466cf6c616f81f8b0131b1914326ed9c3a829c72868bd0563cb053774108853</cites><orcidid>0000-0001-8773-002X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Bhaskar, Rahul</creatorcontrib><creatorcontrib>Peng, Gang</creatorcontrib><title>Artificial Intelligence and Machine Learning for Job Automation: A Review and Integration</title><title>Journal of database management</title><description>Job automation is a critical decision that has brought about profound changes in the workplace. However, the question of what drives job automation remains unclear. This study conducts an interdisciplinary review of five theoretical frameworks on job automation, paying particular attention to the role played by artificial intelligence and machine learning. It highlights the concepts and mechanisms underlying each of the frameworks, compares and contrasts their similarities and differences, and highlights challenges and suggests opportunities of job automation. It also proposes an integrated framework on job automation by addressing the research gaps in extant frameworks and thereby contributes to the research and practice on this important topic.</description><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Computational linguistics</subject><subject>Data base management</subject><subject>Language processing</subject><subject>Machine learning</subject><subject>Natural language interfaces</subject><subject>Simon, Herbert Alexander</subject><issn>1063-8016</issn><issn>1533-8010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkc1q3DAUhU1Jocm0mz6BoLsQT3QtS5azM0nzxwyF0i66ErIsOQoeKZHslr59lHFgMjAIpIv0nXPRPVn2FfCyxMDP76_WSwK8pPRDdgyUkJxjwEepxmxbs0_ZSYyPGAOFqjjO_jRhtMYqKwd050Y9DLbXTmkkXYfWUj1Yp9FKy-Cs65HxAd37FjXT6DdytN5doAb91H-t_rdVvFr0YfvyOfto5BD1l7dzkf2-_v7r8jZf_bi5u2xWuSIlH_OOlYwpwxQDZjgY3mIg0EINJSmY7mpFJC9qVRWc8bbDlBHVYkqqqgTMOSWL7Nvs-xT886TjKB79FFxqKYqKp0_WtOY7qpeDFtYZPwapNjYq0VS0LgqAgiUqP0ClgeggB--0sel6j18e4NPq9Maqg4Kzd4J2imm8MW3R9g9j7OUU4z5-OuMq-BiDNuIp2I0M_wVg8Rq4SIGLOfAENzNse7ubwZyteJ-tSEmJ9QGHkrwAmwWu-Q</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Bhaskar, Rahul</creator><creator>Peng, Gang</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88K</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>M2T</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8773-002X</orcidid></search><sort><creationdate>20230101</creationdate><title>Artificial Intelligence and Machine Learning for Job Automation: A Review and Integration</title><author>Bhaskar, Rahul ; Peng, Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-d6466cf6c616f81f8b0131b1914326ed9c3a829c72868bd0563cb053774108853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Computational linguistics</topic><topic>Data base management</topic><topic>Language processing</topic><topic>Machine learning</topic><topic>Natural language interfaces</topic><topic>Simon, Herbert Alexander</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhaskar, Rahul</creatorcontrib><creatorcontrib>Peng, Gang</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of database management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhaskar, Rahul</au><au>Peng, Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence and Machine Learning for Job Automation: A Review and Integration</atitle><jtitle>Journal of database management</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>34</volume><issue>1</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1063-8016</issn><eissn>1533-8010</eissn><abstract>Job automation is a critical decision that has brought about profound changes in the workplace. However, the question of what drives job automation remains unclear. This study conducts an interdisciplinary review of five theoretical frameworks on job automation, paying particular attention to the role played by artificial intelligence and machine learning. It highlights the concepts and mechanisms underlying each of the frameworks, compares and contrasts their similarities and differences, and highlights challenges and suggests opportunities of job automation. It also proposes an integrated framework on job automation by addressing the research gaps in extant frameworks and thereby contributes to the research and practice on this important topic.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/JDM.318455</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8773-002X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-8016
ispartof Journal of database management, 2023-01, Vol.34 (1), p.1-12
issn 1063-8016
1533-8010
language eng
recordid cdi_proquest_journals_2781729598
source Alma/SFX Local Collection
subjects Artificial intelligence
Automation
Computational linguistics
Data base management
Language processing
Machine learning
Natural language interfaces
Simon, Herbert Alexander
title Artificial Intelligence and Machine Learning for Job Automation: A Review and Integration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T06%3A21%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20and%20Machine%20Learning%20for%20Job%20Automation:%20A%20Review%20and%20Integration&rft.jtitle=Journal%20of%20database%20management&rft.au=Bhaskar,%20Rahul&rft.date=2023-01-01&rft.volume=34&rft.issue=1&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1063-8016&rft.eissn=1533-8010&rft_id=info:doi/10.4018/JDM.318455&rft_dat=%3Cgale_proqu%3EA759221126%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2781729598&rft_id=info:pmid/&rft_galeid=A759221126&rfr_iscdi=true