Si–Ge–Sn alloys grown by chemical vapour deposition: a versatile material for photonics, electronics, and thermoelectrics

Si–Ge–Sn alloys are offering unusual material properties with a strong potential to add a variety of functionalities to advanced CMOS technology. Being a group IV alloy, SiGeSn can be monolithically integrated on Si. The discovery of a direct band gap at Sn concentration above 8%, the extremely smal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2023-03, Vol.129 (3), Article 235
Hauptverfasser: Grützmacher, D., Concepción, O., Zhao, Q.-T., Buca, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 129
creator Grützmacher, D.
Concepción, O.
Zhao, Q.-T.
Buca, D.
description Si–Ge–Sn alloys are offering unusual material properties with a strong potential to add a variety of functionalities to advanced CMOS technology. Being a group IV alloy, SiGeSn can be monolithically integrated on Si. The discovery of a direct band gap at Sn concentration above 8%, the extremely small effective mass for electrons and holes as well as the pronounced phonon scattering are opening new opportunities for Si photonics, high frequency devices and thermoelectrics. Si–Ge–Sn alloys with Sn concentration far beyond the solid solubility limit are metastable, artificial materials, which request challenging growth conditions. In this paper the epitaxial conditions for Si–Ge–Sn alloys to achieve precise control of the Sn content, to manage the lattice mismatch and defects, as well as to fabricate doped layers are discussed. The applied process control allows for epitaxy of group-IV heterostructures, required for typical devices for photonic and electronic applications. In this context, lasers and nanowires MOSFETs are discussed in this paper. In additions, the thermal conductivity is investigated as a critical material parameter to obtain a high thermoelectric figure of merit in GeSn alloys.
doi_str_mv 10.1007/s00339-023-06478-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2781699674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781699674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-cf8e29908187c61f3630a57cce527324458aaebafa6d7b6cef33266f998152413</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwGvruZrk403KVqFggf1HNJ0tt2y3azJttKD4H_wH_pLTN2CN-cwwzzee8M8hM4puaKEqOtICOc6I4xnRApVZOIADajgLK2cHKIB0UJlBdfyGJ3EuCSpBGMD9PFcfX9-jSG15wbbuvbbiOfBvzd4usVuAavK2RpvbOvXAc-g9bHqKt_cYIs3EKLtqhrwynYQqsQrfcDtwne-qVy8xFCD68J-sc0MdwsIK9_DCTxFR6WtI5zt5xC93t-9jB6yydP4cXQ7yRyXvMtcWQDTmhS0UE7SMoHE5so5yJniTIi8sBamtrRypqbSQck5k7LUuqA5E5QP0UXv2wb_tobYmWV6p0knDVMFlVpLJRKL9SwXfIwBStOGamXD1lBidjGbPmaTYja_MZudiPeimMjNHMKf9T-qHxT5g6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781699674</pqid></control><display><type>article</type><title>Si–Ge–Sn alloys grown by chemical vapour deposition: a versatile material for photonics, electronics, and thermoelectrics</title><source>Springer Nature - Complete Springer Journals</source><creator>Grützmacher, D. ; Concepción, O. ; Zhao, Q.-T. ; Buca, D.</creator><creatorcontrib>Grützmacher, D. ; Concepción, O. ; Zhao, Q.-T. ; Buca, D.</creatorcontrib><description>Si–Ge–Sn alloys are offering unusual material properties with a strong potential to add a variety of functionalities to advanced CMOS technology. Being a group IV alloy, SiGeSn can be monolithically integrated on Si. The discovery of a direct band gap at Sn concentration above 8%, the extremely small effective mass for electrons and holes as well as the pronounced phonon scattering are opening new opportunities for Si photonics, high frequency devices and thermoelectrics. Si–Ge–Sn alloys with Sn concentration far beyond the solid solubility limit are metastable, artificial materials, which request challenging growth conditions. In this paper the epitaxial conditions for Si–Ge–Sn alloys to achieve precise control of the Sn content, to manage the lattice mismatch and defects, as well as to fabricate doped layers are discussed. The applied process control allows for epitaxy of group-IV heterostructures, required for typical devices for photonic and electronic applications. In this context, lasers and nanowires MOSFETs are discussed in this paper. In additions, the thermal conductivity is investigated as a critical material parameter to obtain a high thermoelectric figure of merit in GeSn alloys.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-023-06478-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>50th Anniversary of Applied Physics ; Applied physics ; Characterization and Evaluation of Materials ; Chemical vapor deposition ; Condensed Matter Physics ; Epitaxial growth ; Figure of merit ; Germanium ; Heterostructures ; Machines ; Manufacturing ; Material properties ; Materials science ; Nanotechnology ; Nanowires ; Optical and Electronic Materials ; Photonics ; Physics ; Physics and Astronomy ; Process controls ; Processes ; S.I. : 50th Anniversary of Applied Physics ; Silicon ; Solid solubility ; Surfaces and Interfaces ; Thermal conductivity ; Thermoelectricity ; Thin Films ; Tin ; Tin base alloys</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2023-03, Vol.129 (3), Article 235</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-cf8e29908187c61f3630a57cce527324458aaebafa6d7b6cef33266f998152413</citedby><cites>FETCH-LOGICAL-c363t-cf8e29908187c61f3630a57cce527324458aaebafa6d7b6cef33266f998152413</cites><orcidid>0000-0001-6290-9672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-023-06478-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-023-06478-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Grützmacher, D.</creatorcontrib><creatorcontrib>Concepción, O.</creatorcontrib><creatorcontrib>Zhao, Q.-T.</creatorcontrib><creatorcontrib>Buca, D.</creatorcontrib><title>Si–Ge–Sn alloys grown by chemical vapour deposition: a versatile material for photonics, electronics, and thermoelectrics</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Si–Ge–Sn alloys are offering unusual material properties with a strong potential to add a variety of functionalities to advanced CMOS technology. Being a group IV alloy, SiGeSn can be monolithically integrated on Si. The discovery of a direct band gap at Sn concentration above 8%, the extremely small effective mass for electrons and holes as well as the pronounced phonon scattering are opening new opportunities for Si photonics, high frequency devices and thermoelectrics. Si–Ge–Sn alloys with Sn concentration far beyond the solid solubility limit are metastable, artificial materials, which request challenging growth conditions. In this paper the epitaxial conditions for Si–Ge–Sn alloys to achieve precise control of the Sn content, to manage the lattice mismatch and defects, as well as to fabricate doped layers are discussed. The applied process control allows for epitaxy of group-IV heterostructures, required for typical devices for photonic and electronic applications. In this context, lasers and nanowires MOSFETs are discussed in this paper. In additions, the thermal conductivity is investigated as a critical material parameter to obtain a high thermoelectric figure of merit in GeSn alloys.</description><subject>50th Anniversary of Applied Physics</subject><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical vapor deposition</subject><subject>Condensed Matter Physics</subject><subject>Epitaxial growth</subject><subject>Figure of merit</subject><subject>Germanium</subject><subject>Heterostructures</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Material properties</subject><subject>Materials science</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Optical and Electronic Materials</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Process controls</subject><subject>Processes</subject><subject>S.I. : 50th Anniversary of Applied Physics</subject><subject>Silicon</subject><subject>Solid solubility</subject><subject>Surfaces and Interfaces</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><subject>Thin Films</subject><subject>Tin</subject><subject>Tin base alloys</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UE1LAzEQDaJgrf4BTwGvruZrk403KVqFggf1HNJ0tt2y3azJttKD4H_wH_pLTN2CN-cwwzzee8M8hM4puaKEqOtICOc6I4xnRApVZOIADajgLK2cHKIB0UJlBdfyGJ3EuCSpBGMD9PFcfX9-jSG15wbbuvbbiOfBvzd4usVuAavK2RpvbOvXAc-g9bHqKt_cYIs3EKLtqhrwynYQqsQrfcDtwne-qVy8xFCD68J-sc0MdwsIK9_DCTxFR6WtI5zt5xC93t-9jB6yydP4cXQ7yRyXvMtcWQDTmhS0UE7SMoHE5so5yJniTIi8sBamtrRypqbSQck5k7LUuqA5E5QP0UXv2wb_tobYmWV6p0knDVMFlVpLJRKL9SwXfIwBStOGamXD1lBidjGbPmaTYja_MZudiPeimMjNHMKf9T-qHxT5g6s</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Grützmacher, D.</creator><creator>Concepción, O.</creator><creator>Zhao, Q.-T.</creator><creator>Buca, D.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6290-9672</orcidid></search><sort><creationdate>20230301</creationdate><title>Si–Ge–Sn alloys grown by chemical vapour deposition: a versatile material for photonics, electronics, and thermoelectrics</title><author>Grützmacher, D. ; Concepción, O. ; Zhao, Q.-T. ; Buca, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-cf8e29908187c61f3630a57cce527324458aaebafa6d7b6cef33266f998152413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>50th Anniversary of Applied Physics</topic><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical vapor deposition</topic><topic>Condensed Matter Physics</topic><topic>Epitaxial growth</topic><topic>Figure of merit</topic><topic>Germanium</topic><topic>Heterostructures</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Material properties</topic><topic>Materials science</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Optical and Electronic Materials</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Process controls</topic><topic>Processes</topic><topic>S.I. : 50th Anniversary of Applied Physics</topic><topic>Silicon</topic><topic>Solid solubility</topic><topic>Surfaces and Interfaces</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><topic>Thin Films</topic><topic>Tin</topic><topic>Tin base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grützmacher, D.</creatorcontrib><creatorcontrib>Concepción, O.</creatorcontrib><creatorcontrib>Zhao, Q.-T.</creatorcontrib><creatorcontrib>Buca, D.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grützmacher, D.</au><au>Concepción, O.</au><au>Zhao, Q.-T.</au><au>Buca, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Si–Ge–Sn alloys grown by chemical vapour deposition: a versatile material for photonics, electronics, and thermoelectrics</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>129</volume><issue>3</issue><artnum>235</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Si–Ge–Sn alloys are offering unusual material properties with a strong potential to add a variety of functionalities to advanced CMOS technology. Being a group IV alloy, SiGeSn can be monolithically integrated on Si. The discovery of a direct band gap at Sn concentration above 8%, the extremely small effective mass for electrons and holes as well as the pronounced phonon scattering are opening new opportunities for Si photonics, high frequency devices and thermoelectrics. Si–Ge–Sn alloys with Sn concentration far beyond the solid solubility limit are metastable, artificial materials, which request challenging growth conditions. In this paper the epitaxial conditions for Si–Ge–Sn alloys to achieve precise control of the Sn content, to manage the lattice mismatch and defects, as well as to fabricate doped layers are discussed. The applied process control allows for epitaxy of group-IV heterostructures, required for typical devices for photonic and electronic applications. In this context, lasers and nanowires MOSFETs are discussed in this paper. In additions, the thermal conductivity is investigated as a critical material parameter to obtain a high thermoelectric figure of merit in GeSn alloys.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-023-06478-4</doi><orcidid>https://orcid.org/0000-0001-6290-9672</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2023-03, Vol.129 (3), Article 235
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2781699674
source Springer Nature - Complete Springer Journals
subjects 50th Anniversary of Applied Physics
Applied physics
Characterization and Evaluation of Materials
Chemical vapor deposition
Condensed Matter Physics
Epitaxial growth
Figure of merit
Germanium
Heterostructures
Machines
Manufacturing
Material properties
Materials science
Nanotechnology
Nanowires
Optical and Electronic Materials
Photonics
Physics
Physics and Astronomy
Process controls
Processes
S.I. : 50th Anniversary of Applied Physics
Silicon
Solid solubility
Surfaces and Interfaces
Thermal conductivity
Thermoelectricity
Thin Films
Tin
Tin base alloys
title Si–Ge–Sn alloys grown by chemical vapour deposition: a versatile material for photonics, electronics, and thermoelectrics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A15%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Si%E2%80%93Ge%E2%80%93Sn%20alloys%20grown%20by%20chemical%20vapour%20deposition:%20a%20versatile%20material%20for%20photonics,%20electronics,%20and%20thermoelectrics&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Gr%C3%BCtzmacher,%20D.&rft.date=2023-03-01&rft.volume=129&rft.issue=3&rft.artnum=235&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-023-06478-4&rft_dat=%3Cproquest_cross%3E2781699674%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2781699674&rft_id=info:pmid/&rfr_iscdi=true