Si–Ge–Sn alloys grown by chemical vapour deposition: a versatile material for photonics, electronics, and thermoelectrics
Si–Ge–Sn alloys are offering unusual material properties with a strong potential to add a variety of functionalities to advanced CMOS technology. Being a group IV alloy, SiGeSn can be monolithically integrated on Si. The discovery of a direct band gap at Sn concentration above 8%, the extremely smal...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2023-03, Vol.129 (3), Article 235 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Applied physics. A, Materials science & processing |
container_volume | 129 |
creator | Grützmacher, D. Concepción, O. Zhao, Q.-T. Buca, D. |
description | Si–Ge–Sn alloys are offering unusual material properties with a strong potential to add a variety of functionalities to advanced CMOS technology. Being a group IV alloy, SiGeSn can be monolithically integrated on Si. The discovery of a direct band gap at Sn concentration above 8%, the extremely small effective mass for electrons and holes as well as the pronounced phonon scattering are opening new opportunities for Si photonics, high frequency devices and thermoelectrics. Si–Ge–Sn alloys with Sn concentration far beyond the solid solubility limit are metastable, artificial materials, which request challenging growth conditions. In this paper the epitaxial conditions for Si–Ge–Sn alloys to achieve precise control of the Sn content, to manage the lattice mismatch and defects, as well as to fabricate doped layers are discussed. The applied process control allows for epitaxy of group-IV heterostructures, required for typical devices for photonic and electronic applications. In this context, lasers and nanowires MOSFETs are discussed in this paper. In additions, the thermal conductivity is investigated as a critical material parameter to obtain a high thermoelectric figure of merit in GeSn alloys. |
doi_str_mv | 10.1007/s00339-023-06478-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2781699674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781699674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-cf8e29908187c61f3630a57cce527324458aaebafa6d7b6cef33266f998152413</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BTwGvruZrk403KVqFggf1HNJ0tt2y3azJttKD4H_wH_pLTN2CN-cwwzzee8M8hM4puaKEqOtICOc6I4xnRApVZOIADajgLK2cHKIB0UJlBdfyGJ3EuCSpBGMD9PFcfX9-jSG15wbbuvbbiOfBvzd4usVuAavK2RpvbOvXAc-g9bHqKt_cYIs3EKLtqhrwynYQqsQrfcDtwne-qVy8xFCD68J-sc0MdwsIK9_DCTxFR6WtI5zt5xC93t-9jB6yydP4cXQ7yRyXvMtcWQDTmhS0UE7SMoHE5so5yJniTIi8sBamtrRypqbSQck5k7LUuqA5E5QP0UXv2wb_tobYmWV6p0knDVMFlVpLJRKL9SwXfIwBStOGamXD1lBidjGbPmaTYja_MZudiPeimMjNHMKf9T-qHxT5g6s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781699674</pqid></control><display><type>article</type><title>Si–Ge–Sn alloys grown by chemical vapour deposition: a versatile material for photonics, electronics, and thermoelectrics</title><source>Springer Nature - Complete Springer Journals</source><creator>Grützmacher, D. ; Concepción, O. ; Zhao, Q.-T. ; Buca, D.</creator><creatorcontrib>Grützmacher, D. ; Concepción, O. ; Zhao, Q.-T. ; Buca, D.</creatorcontrib><description>Si–Ge–Sn alloys are offering unusual material properties with a strong potential to add a variety of functionalities to advanced CMOS technology. Being a group IV alloy, SiGeSn can be monolithically integrated on Si. The discovery of a direct band gap at Sn concentration above 8%, the extremely small effective mass for electrons and holes as well as the pronounced phonon scattering are opening new opportunities for Si photonics, high frequency devices and thermoelectrics. Si–Ge–Sn alloys with Sn concentration far beyond the solid solubility limit are metastable, artificial materials, which request challenging growth conditions. In this paper the epitaxial conditions for Si–Ge–Sn alloys to achieve precise control of the Sn content, to manage the lattice mismatch and defects, as well as to fabricate doped layers are discussed. The applied process control allows for epitaxy of group-IV heterostructures, required for typical devices for photonic and electronic applications. In this context, lasers and nanowires MOSFETs are discussed in this paper. In additions, the thermal conductivity is investigated as a critical material parameter to obtain a high thermoelectric figure of merit in GeSn alloys.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-023-06478-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>50th Anniversary of Applied Physics ; Applied physics ; Characterization and Evaluation of Materials ; Chemical vapor deposition ; Condensed Matter Physics ; Epitaxial growth ; Figure of merit ; Germanium ; Heterostructures ; Machines ; Manufacturing ; Material properties ; Materials science ; Nanotechnology ; Nanowires ; Optical and Electronic Materials ; Photonics ; Physics ; Physics and Astronomy ; Process controls ; Processes ; S.I. : 50th Anniversary of Applied Physics ; Silicon ; Solid solubility ; Surfaces and Interfaces ; Thermal conductivity ; Thermoelectricity ; Thin Films ; Tin ; Tin base alloys</subject><ispartof>Applied physics. A, Materials science & processing, 2023-03, Vol.129 (3), Article 235</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-cf8e29908187c61f3630a57cce527324458aaebafa6d7b6cef33266f998152413</citedby><cites>FETCH-LOGICAL-c363t-cf8e29908187c61f3630a57cce527324458aaebafa6d7b6cef33266f998152413</cites><orcidid>0000-0001-6290-9672</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-023-06478-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-023-06478-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Grützmacher, D.</creatorcontrib><creatorcontrib>Concepción, O.</creatorcontrib><creatorcontrib>Zhao, Q.-T.</creatorcontrib><creatorcontrib>Buca, D.</creatorcontrib><title>Si–Ge–Sn alloys grown by chemical vapour deposition: a versatile material for photonics, electronics, and thermoelectrics</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>Si–Ge–Sn alloys are offering unusual material properties with a strong potential to add a variety of functionalities to advanced CMOS technology. Being a group IV alloy, SiGeSn can be monolithically integrated on Si. The discovery of a direct band gap at Sn concentration above 8%, the extremely small effective mass for electrons and holes as well as the pronounced phonon scattering are opening new opportunities for Si photonics, high frequency devices and thermoelectrics. Si–Ge–Sn alloys with Sn concentration far beyond the solid solubility limit are metastable, artificial materials, which request challenging growth conditions. In this paper the epitaxial conditions for Si–Ge–Sn alloys to achieve precise control of the Sn content, to manage the lattice mismatch and defects, as well as to fabricate doped layers are discussed. The applied process control allows for epitaxy of group-IV heterostructures, required for typical devices for photonic and electronic applications. In this context, lasers and nanowires MOSFETs are discussed in this paper. In additions, the thermal conductivity is investigated as a critical material parameter to obtain a high thermoelectric figure of merit in GeSn alloys.</description><subject>50th Anniversary of Applied Physics</subject><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical vapor deposition</subject><subject>Condensed Matter Physics</subject><subject>Epitaxial growth</subject><subject>Figure of merit</subject><subject>Germanium</subject><subject>Heterostructures</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Material properties</subject><subject>Materials science</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Optical and Electronic Materials</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Process controls</subject><subject>Processes</subject><subject>S.I. : 50th Anniversary of Applied Physics</subject><subject>Silicon</subject><subject>Solid solubility</subject><subject>Surfaces and Interfaces</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><subject>Thin Films</subject><subject>Tin</subject><subject>Tin base alloys</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9UE1LAzEQDaJgrf4BTwGvruZrk403KVqFggf1HNJ0tt2y3azJttKD4H_wH_pLTN2CN-cwwzzee8M8hM4puaKEqOtICOc6I4xnRApVZOIADajgLK2cHKIB0UJlBdfyGJ3EuCSpBGMD9PFcfX9-jSG15wbbuvbbiOfBvzd4usVuAavK2RpvbOvXAc-g9bHqKt_cYIs3EKLtqhrwynYQqsQrfcDtwne-qVy8xFCD68J-sc0MdwsIK9_DCTxFR6WtI5zt5xC93t-9jB6yydP4cXQ7yRyXvMtcWQDTmhS0UE7SMoHE5so5yJniTIi8sBamtrRypqbSQck5k7LUuqA5E5QP0UXv2wb_tobYmWV6p0knDVMFlVpLJRKL9SwXfIwBStOGamXD1lBidjGbPmaTYja_MZudiPeimMjNHMKf9T-qHxT5g6s</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Grützmacher, D.</creator><creator>Concepción, O.</creator><creator>Zhao, Q.-T.</creator><creator>Buca, D.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6290-9672</orcidid></search><sort><creationdate>20230301</creationdate><title>Si–Ge–Sn alloys grown by chemical vapour deposition: a versatile material for photonics, electronics, and thermoelectrics</title><author>Grützmacher, D. ; Concepción, O. ; Zhao, Q.-T. ; Buca, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-cf8e29908187c61f3630a57cce527324458aaebafa6d7b6cef33266f998152413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>50th Anniversary of Applied Physics</topic><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical vapor deposition</topic><topic>Condensed Matter Physics</topic><topic>Epitaxial growth</topic><topic>Figure of merit</topic><topic>Germanium</topic><topic>Heterostructures</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Material properties</topic><topic>Materials science</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Optical and Electronic Materials</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Process controls</topic><topic>Processes</topic><topic>S.I. : 50th Anniversary of Applied Physics</topic><topic>Silicon</topic><topic>Solid solubility</topic><topic>Surfaces and Interfaces</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><topic>Thin Films</topic><topic>Tin</topic><topic>Tin base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grützmacher, D.</creatorcontrib><creatorcontrib>Concepción, O.</creatorcontrib><creatorcontrib>Zhao, Q.-T.</creatorcontrib><creatorcontrib>Buca, D.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grützmacher, D.</au><au>Concepción, O.</au><au>Zhao, Q.-T.</au><au>Buca, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Si–Ge–Sn alloys grown by chemical vapour deposition: a versatile material for photonics, electronics, and thermoelectrics</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>129</volume><issue>3</issue><artnum>235</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Si–Ge–Sn alloys are offering unusual material properties with a strong potential to add a variety of functionalities to advanced CMOS technology. Being a group IV alloy, SiGeSn can be monolithically integrated on Si. The discovery of a direct band gap at Sn concentration above 8%, the extremely small effective mass for electrons and holes as well as the pronounced phonon scattering are opening new opportunities for Si photonics, high frequency devices and thermoelectrics. Si–Ge–Sn alloys with Sn concentration far beyond the solid solubility limit are metastable, artificial materials, which request challenging growth conditions. In this paper the epitaxial conditions for Si–Ge–Sn alloys to achieve precise control of the Sn content, to manage the lattice mismatch and defects, as well as to fabricate doped layers are discussed. The applied process control allows for epitaxy of group-IV heterostructures, required for typical devices for photonic and electronic applications. In this context, lasers and nanowires MOSFETs are discussed in this paper. In additions, the thermal conductivity is investigated as a critical material parameter to obtain a high thermoelectric figure of merit in GeSn alloys.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-023-06478-4</doi><orcidid>https://orcid.org/0000-0001-6290-9672</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2023-03, Vol.129 (3), Article 235 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_2781699674 |
source | Springer Nature - Complete Springer Journals |
subjects | 50th Anniversary of Applied Physics Applied physics Characterization and Evaluation of Materials Chemical vapor deposition Condensed Matter Physics Epitaxial growth Figure of merit Germanium Heterostructures Machines Manufacturing Material properties Materials science Nanotechnology Nanowires Optical and Electronic Materials Photonics Physics Physics and Astronomy Process controls Processes S.I. : 50th Anniversary of Applied Physics Silicon Solid solubility Surfaces and Interfaces Thermal conductivity Thermoelectricity Thin Films Tin Tin base alloys |
title | Si–Ge–Sn alloys grown by chemical vapour deposition: a versatile material for photonics, electronics, and thermoelectrics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A15%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Si%E2%80%93Ge%E2%80%93Sn%20alloys%20grown%20by%20chemical%20vapour%20deposition:%20a%20versatile%20material%20for%20photonics,%20electronics,%20and%20thermoelectrics&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Gr%C3%BCtzmacher,%20D.&rft.date=2023-03-01&rft.volume=129&rft.issue=3&rft.artnum=235&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-023-06478-4&rft_dat=%3Cproquest_cross%3E2781699674%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2781699674&rft_id=info:pmid/&rfr_iscdi=true |