Estimating the Dimension of the Subfield Subcodes of Hermitian Codes

In this paper, we study the behavior of the true dimension of the subfield subcodes of Hermitian codes. Our motivation is to use these classes of linear codes to improve the parameters of the McEliece cryptosystem, suchas key size and security level. The McEliece scheme is one of the promising alter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta cybernetica (Szeged) 2020-07, Vol.24 (4), p.625-641
Hauptverfasser: Nagy, Gábor Péter, El Khalfaoui, Sabira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 641
container_issue 4
container_start_page 625
container_title Acta cybernetica (Szeged)
container_volume 24
creator Nagy, Gábor Péter
El Khalfaoui, Sabira
description In this paper, we study the behavior of the true dimension of the subfield subcodes of Hermitian codes. Our motivation is to use these classes of linear codes to improve the parameters of the McEliece cryptosystem, suchas key size and security level. The McEliece scheme is one of the promising alternative cryptographic schemes to the current public key schemes since in the last four decades, they resisted all known quantum computing attacks. By computing and analyzing a data collection of true dimensions of subfield subcodes, we concluded that they can be estimated by the extreme value distribution function.
doi_str_mv 10.14232/actacyb.285453
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2781673983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781673983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-a4ef8e95d1a25c8836dcde1aacc50a5c31830f077d721da9fedc1c4524ac75ad3</originalsourceid><addsrcrecordid>eNotkE1PAjEQhhujiQQ5e93E80I_t92jARQSEg9qwq0p01ZLYBfbcuDfu8syl5m882Y-HoSeCZ4SThmdGcgGLrspVYILdodGtJJVWddse49GmFFeSkq2j2iS0h53ISpOWDVCi2XK4WhyaH6K_OuKRTi6JoW2KVp_FT7POx_cwfYFtNalvrFy8RhyME0x76Un9ODNIbnJLY_R99vya74qNx_v6_nrpgRKWS4Nd165WlhiqAClWGXBOmIMgMBGACOKYY-ltN2t1tTeWSDABeUGpDCWjdHLMPcU27-zS1nv23NsupWaSkUqyWrFOtdscEFsU4rO61PsXowXTbC-0tI3Wnqgxf4BXRRe6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781673983</pqid></control><display><type>article</type><title>Estimating the Dimension of the Subfield Subcodes of Hermitian Codes</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Nagy, Gábor Péter ; El Khalfaoui, Sabira</creator><creatorcontrib>Nagy, Gábor Péter ; El Khalfaoui, Sabira</creatorcontrib><description>In this paper, we study the behavior of the true dimension of the subfield subcodes of Hermitian codes. Our motivation is to use these classes of linear codes to improve the parameters of the McEliece cryptosystem, suchas key size and security level. The McEliece scheme is one of the promising alternative cryptographic schemes to the current public key schemes since in the last four decades, they resisted all known quantum computing attacks. By computing and analyzing a data collection of true dimensions of subfield subcodes, we concluded that they can be estimated by the extreme value distribution function.</description><identifier>ISSN: 0324-721X</identifier><identifier>EISSN: 2676-993X</identifier><identifier>DOI: 10.14232/actacyb.285453</identifier><language>eng</language><publisher>Szeged: Laszlo Nyul</publisher><subject>Algebra ; Algorithms ; Codes ; Cryptography ; Distribution functions ; Extreme values ; Geometry ; Linear codes ; Quantum computing ; Reed-Solomon codes</subject><ispartof>Acta cybernetica (Szeged), 2020-07, Vol.24 (4), p.625-641</ispartof><rights>Copyright Laszlo Nyul Dec 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c223t-a4ef8e95d1a25c8836dcde1aacc50a5c31830f077d721da9fedc1c4524ac75ad3</cites><orcidid>0000-0002-1792-2947 ; 0000-0002-9558-4197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Nagy, Gábor Péter</creatorcontrib><creatorcontrib>El Khalfaoui, Sabira</creatorcontrib><title>Estimating the Dimension of the Subfield Subcodes of Hermitian Codes</title><title>Acta cybernetica (Szeged)</title><description>In this paper, we study the behavior of the true dimension of the subfield subcodes of Hermitian codes. Our motivation is to use these classes of linear codes to improve the parameters of the McEliece cryptosystem, suchas key size and security level. The McEliece scheme is one of the promising alternative cryptographic schemes to the current public key schemes since in the last four decades, they resisted all known quantum computing attacks. By computing and analyzing a data collection of true dimensions of subfield subcodes, we concluded that they can be estimated by the extreme value distribution function.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Codes</subject><subject>Cryptography</subject><subject>Distribution functions</subject><subject>Extreme values</subject><subject>Geometry</subject><subject>Linear codes</subject><subject>Quantum computing</subject><subject>Reed-Solomon codes</subject><issn>0324-721X</issn><issn>2676-993X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkE1PAjEQhhujiQQ5e93E80I_t92jARQSEg9qwq0p01ZLYBfbcuDfu8syl5m882Y-HoSeCZ4SThmdGcgGLrspVYILdodGtJJVWddse49GmFFeSkq2j2iS0h53ISpOWDVCi2XK4WhyaH6K_OuKRTi6JoW2KVp_FT7POx_cwfYFtNalvrFy8RhyME0x76Un9ODNIbnJLY_R99vya74qNx_v6_nrpgRKWS4Nd165WlhiqAClWGXBOmIMgMBGACOKYY-ltN2t1tTeWSDABeUGpDCWjdHLMPcU27-zS1nv23NsupWaSkUqyWrFOtdscEFsU4rO61PsXowXTbC-0tI3Wnqgxf4BXRRe6A</recordid><startdate>20200725</startdate><enddate>20200725</enddate><creator>Nagy, Gábor Péter</creator><creator>El Khalfaoui, Sabira</creator><general>Laszlo Nyul</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>U9A</scope><orcidid>https://orcid.org/0000-0002-1792-2947</orcidid><orcidid>https://orcid.org/0000-0002-9558-4197</orcidid></search><sort><creationdate>20200725</creationdate><title>Estimating the Dimension of the Subfield Subcodes of Hermitian Codes</title><author>Nagy, Gábor Péter ; El Khalfaoui, Sabira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-a4ef8e95d1a25c8836dcde1aacc50a5c31830f077d721da9fedc1c4524ac75ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Codes</topic><topic>Cryptography</topic><topic>Distribution functions</topic><topic>Extreme values</topic><topic>Geometry</topic><topic>Linear codes</topic><topic>Quantum computing</topic><topic>Reed-Solomon codes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagy, Gábor Péter</creatorcontrib><creatorcontrib>El Khalfaoui, Sabira</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta cybernetica (Szeged)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagy, Gábor Péter</au><au>El Khalfaoui, Sabira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the Dimension of the Subfield Subcodes of Hermitian Codes</atitle><jtitle>Acta cybernetica (Szeged)</jtitle><date>2020-07-25</date><risdate>2020</risdate><volume>24</volume><issue>4</issue><spage>625</spage><epage>641</epage><pages>625-641</pages><issn>0324-721X</issn><eissn>2676-993X</eissn><abstract>In this paper, we study the behavior of the true dimension of the subfield subcodes of Hermitian codes. Our motivation is to use these classes of linear codes to improve the parameters of the McEliece cryptosystem, suchas key size and security level. The McEliece scheme is one of the promising alternative cryptographic schemes to the current public key schemes since in the last four decades, they resisted all known quantum computing attacks. By computing and analyzing a data collection of true dimensions of subfield subcodes, we concluded that they can be estimated by the extreme value distribution function.</abstract><cop>Szeged</cop><pub>Laszlo Nyul</pub><doi>10.14232/actacyb.285453</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1792-2947</orcidid><orcidid>https://orcid.org/0000-0002-9558-4197</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0324-721X
ispartof Acta cybernetica (Szeged), 2020-07, Vol.24 (4), p.625-641
issn 0324-721X
2676-993X
language eng
recordid cdi_proquest_journals_2781673983
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algebra
Algorithms
Codes
Cryptography
Distribution functions
Extreme values
Geometry
Linear codes
Quantum computing
Reed-Solomon codes
title Estimating the Dimension of the Subfield Subcodes of Hermitian Codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20Dimension%20of%20the%20Subfield%20Subcodes%20of%20Hermitian%20Codes&rft.jtitle=Acta%20cybernetica%20(Szeged)&rft.au=Nagy,%20G%C3%A1bor%20P%C3%A9ter&rft.date=2020-07-25&rft.volume=24&rft.issue=4&rft.spage=625&rft.epage=641&rft.pages=625-641&rft.issn=0324-721X&rft.eissn=2676-993X&rft_id=info:doi/10.14232/actacyb.285453&rft_dat=%3Cproquest_cross%3E2781673983%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2781673983&rft_id=info:pmid/&rfr_iscdi=true