Estimating the Dimension of the Subfield Subcodes of Hermitian Codes
In this paper, we study the behavior of the true dimension of the subfield subcodes of Hermitian codes. Our motivation is to use these classes of linear codes to improve the parameters of the McEliece cryptosystem, suchas key size and security level. The McEliece scheme is one of the promising alter...
Gespeichert in:
Veröffentlicht in: | Acta cybernetica (Szeged) 2020-07, Vol.24 (4), p.625-641 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 641 |
---|---|
container_issue | 4 |
container_start_page | 625 |
container_title | Acta cybernetica (Szeged) |
container_volume | 24 |
creator | Nagy, Gábor Péter El Khalfaoui, Sabira |
description | In this paper, we study the behavior of the true dimension of the subfield subcodes of Hermitian codes. Our motivation is to use these classes of linear codes to improve the parameters of the McEliece cryptosystem, suchas key size and security level. The McEliece scheme is one of the promising alternative cryptographic schemes to the current public key schemes since in the last four decades, they resisted all known quantum computing attacks. By computing and analyzing a data collection of true dimensions of subfield subcodes, we concluded that they can be estimated by the extreme value distribution function. |
doi_str_mv | 10.14232/actacyb.285453 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2781673983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781673983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c223t-a4ef8e95d1a25c8836dcde1aacc50a5c31830f077d721da9fedc1c4524ac75ad3</originalsourceid><addsrcrecordid>eNotkE1PAjEQhhujiQQ5e93E80I_t92jARQSEg9qwq0p01ZLYBfbcuDfu8syl5m882Y-HoSeCZ4SThmdGcgGLrspVYILdodGtJJVWddse49GmFFeSkq2j2iS0h53ISpOWDVCi2XK4WhyaH6K_OuKRTi6JoW2KVp_FT7POx_cwfYFtNalvrFy8RhyME0x76Un9ODNIbnJLY_R99vya74qNx_v6_nrpgRKWS4Nd165WlhiqAClWGXBOmIMgMBGACOKYY-ltN2t1tTeWSDABeUGpDCWjdHLMPcU27-zS1nv23NsupWaSkUqyWrFOtdscEFsU4rO61PsXowXTbC-0tI3Wnqgxf4BXRRe6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781673983</pqid></control><display><type>article</type><title>Estimating the Dimension of the Subfield Subcodes of Hermitian Codes</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Nagy, Gábor Péter ; El Khalfaoui, Sabira</creator><creatorcontrib>Nagy, Gábor Péter ; El Khalfaoui, Sabira</creatorcontrib><description>In this paper, we study the behavior of the true dimension of the subfield subcodes of Hermitian codes. Our motivation is to use these classes of linear codes to improve the parameters of the McEliece cryptosystem, suchas key size and security level. The McEliece scheme is one of the promising alternative cryptographic schemes to the current public key schemes since in the last four decades, they resisted all known quantum computing attacks. By computing and analyzing a data collection of true dimensions of subfield subcodes, we concluded that they can be estimated by the extreme value distribution function.</description><identifier>ISSN: 0324-721X</identifier><identifier>EISSN: 2676-993X</identifier><identifier>DOI: 10.14232/actacyb.285453</identifier><language>eng</language><publisher>Szeged: Laszlo Nyul</publisher><subject>Algebra ; Algorithms ; Codes ; Cryptography ; Distribution functions ; Extreme values ; Geometry ; Linear codes ; Quantum computing ; Reed-Solomon codes</subject><ispartof>Acta cybernetica (Szeged), 2020-07, Vol.24 (4), p.625-641</ispartof><rights>Copyright Laszlo Nyul Dec 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c223t-a4ef8e95d1a25c8836dcde1aacc50a5c31830f077d721da9fedc1c4524ac75ad3</cites><orcidid>0000-0002-1792-2947 ; 0000-0002-9558-4197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Nagy, Gábor Péter</creatorcontrib><creatorcontrib>El Khalfaoui, Sabira</creatorcontrib><title>Estimating the Dimension of the Subfield Subcodes of Hermitian Codes</title><title>Acta cybernetica (Szeged)</title><description>In this paper, we study the behavior of the true dimension of the subfield subcodes of Hermitian codes. Our motivation is to use these classes of linear codes to improve the parameters of the McEliece cryptosystem, suchas key size and security level. The McEliece scheme is one of the promising alternative cryptographic schemes to the current public key schemes since in the last four decades, they resisted all known quantum computing attacks. By computing and analyzing a data collection of true dimensions of subfield subcodes, we concluded that they can be estimated by the extreme value distribution function.</description><subject>Algebra</subject><subject>Algorithms</subject><subject>Codes</subject><subject>Cryptography</subject><subject>Distribution functions</subject><subject>Extreme values</subject><subject>Geometry</subject><subject>Linear codes</subject><subject>Quantum computing</subject><subject>Reed-Solomon codes</subject><issn>0324-721X</issn><issn>2676-993X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNotkE1PAjEQhhujiQQ5e93E80I_t92jARQSEg9qwq0p01ZLYBfbcuDfu8syl5m882Y-HoSeCZ4SThmdGcgGLrspVYILdodGtJJVWddse49GmFFeSkq2j2iS0h53ISpOWDVCi2XK4WhyaH6K_OuKRTi6JoW2KVp_FT7POx_cwfYFtNalvrFy8RhyME0x76Un9ODNIbnJLY_R99vya74qNx_v6_nrpgRKWS4Nd165WlhiqAClWGXBOmIMgMBGACOKYY-ltN2t1tTeWSDABeUGpDCWjdHLMPcU27-zS1nv23NsupWaSkUqyWrFOtdscEFsU4rO61PsXowXTbC-0tI3Wnqgxf4BXRRe6A</recordid><startdate>20200725</startdate><enddate>20200725</enddate><creator>Nagy, Gábor Péter</creator><creator>El Khalfaoui, Sabira</creator><general>Laszlo Nyul</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>U9A</scope><orcidid>https://orcid.org/0000-0002-1792-2947</orcidid><orcidid>https://orcid.org/0000-0002-9558-4197</orcidid></search><sort><creationdate>20200725</creationdate><title>Estimating the Dimension of the Subfield Subcodes of Hermitian Codes</title><author>Nagy, Gábor Péter ; El Khalfaoui, Sabira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c223t-a4ef8e95d1a25c8836dcde1aacc50a5c31830f077d721da9fedc1c4524ac75ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Algorithms</topic><topic>Codes</topic><topic>Cryptography</topic><topic>Distribution functions</topic><topic>Extreme values</topic><topic>Geometry</topic><topic>Linear codes</topic><topic>Quantum computing</topic><topic>Reed-Solomon codes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagy, Gábor Péter</creatorcontrib><creatorcontrib>El Khalfaoui, Sabira</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta cybernetica (Szeged)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagy, Gábor Péter</au><au>El Khalfaoui, Sabira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the Dimension of the Subfield Subcodes of Hermitian Codes</atitle><jtitle>Acta cybernetica (Szeged)</jtitle><date>2020-07-25</date><risdate>2020</risdate><volume>24</volume><issue>4</issue><spage>625</spage><epage>641</epage><pages>625-641</pages><issn>0324-721X</issn><eissn>2676-993X</eissn><abstract>In this paper, we study the behavior of the true dimension of the subfield subcodes of Hermitian codes. Our motivation is to use these classes of linear codes to improve the parameters of the McEliece cryptosystem, suchas key size and security level. The McEliece scheme is one of the promising alternative cryptographic schemes to the current public key schemes since in the last four decades, they resisted all known quantum computing attacks. By computing and analyzing a data collection of true dimensions of subfield subcodes, we concluded that they can be estimated by the extreme value distribution function.</abstract><cop>Szeged</cop><pub>Laszlo Nyul</pub><doi>10.14232/actacyb.285453</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-1792-2947</orcidid><orcidid>https://orcid.org/0000-0002-9558-4197</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0324-721X |
ispartof | Acta cybernetica (Szeged), 2020-07, Vol.24 (4), p.625-641 |
issn | 0324-721X 2676-993X |
language | eng |
recordid | cdi_proquest_journals_2781673983 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algebra Algorithms Codes Cryptography Distribution functions Extreme values Geometry Linear codes Quantum computing Reed-Solomon codes |
title | Estimating the Dimension of the Subfield Subcodes of Hermitian Codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20Dimension%20of%20the%20Subfield%20Subcodes%20of%20Hermitian%20Codes&rft.jtitle=Acta%20cybernetica%20(Szeged)&rft.au=Nagy,%20G%C3%A1bor%20P%C3%A9ter&rft.date=2020-07-25&rft.volume=24&rft.issue=4&rft.spage=625&rft.epage=641&rft.pages=625-641&rft.issn=0324-721X&rft.eissn=2676-993X&rft_id=info:doi/10.14232/actacyb.285453&rft_dat=%3Cproquest_cross%3E2781673983%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2781673983&rft_id=info:pmid/&rfr_iscdi=true |