Uncertainty Quantification and Field Source Inversion for the Continental-Scale Time-Varying Gravity Dataset: A Case Study in SE Tibet, China

Southeastern (SE) Tibet on the Chinese mainland is geologically active and plays an important role in subsurface deformation and mass transfers. Hybrid gravimetry using both absolute and relative gravimeters is an efficient tool for monitoring surface and underground mass transfers. But for hybrid g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pure and applied geophysics 2023-02, Vol.180 (2), p.683-702
Hauptverfasser: Chen, Zhaohui, Chen, Shi, Zhang, Bei, Wang, Linhai, Shi, Lei, Lu, Hongyan, Liu, Jinzhao, Xu, Weimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 702
container_issue 2
container_start_page 683
container_title Pure and applied geophysics
container_volume 180
creator Chen, Zhaohui
Chen, Shi
Zhang, Bei
Wang, Linhai
Shi, Lei
Lu, Hongyan
Liu, Jinzhao
Xu, Weimin
description Southeastern (SE) Tibet on the Chinese mainland is geologically active and plays an important role in subsurface deformation and mass transfers. Hybrid gravimetry using both absolute and relative gravimeters is an efficient tool for monitoring surface and underground mass transfers. But for hybrid gravity network surveys, uncertainties are influenced by measurement errors, while sparseness of the network and environmental artifacts must be identified and minimized prior to studying gravity change. In this study, Bayesian gravity adjustment (BGA) was applied for the first time to the hybrid gravity network in SE Tibet during 2014–2016, which effectively reduced measurement uncertainties via its estimated scale factors and drift rates, thereby demonstrating its suitability for the large and complex gravity network in SE Tibet. To estimate the field source resolution, reduce environmental artifacts, and invert mass redistributions on the deep crust, an equivalent source inversion (ESI) based on the spatiotemporal smoothness regularization constraint model and the Akaike Bayesian information criterion parameter estimation method was applied to datasets processed by BGA. With respect to processing synthetic gravity data with spatiotemporal noises, the ESI was an effective algorithm, with the optimal field source resolution in SE Tibet being 0.75° × 0.75°. The apparent density change at a depth of 20 km was then inverted, with an average rate of −0.6 to 0.6 kg/m 3 /year, which was approximately 0.22‰ of the average crustal density. In addition, its spatial distribution showed close consistency with active tectonic block boundaries and low-velocity/high-conductivity zones. Comprehensively considering the hydrological effects, GPS observation studies, and geophysical and petrological evidence in the region, this study suggests that the crustal mass redistributions in SE Tibet are possibly controlled by active tectonic block boundaries and fluids distributed in the deep crust.
doi_str_mv 10.1007/s00024-022-03095-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2781403761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781403761</sourcerecordid><originalsourceid>FETCH-LOGICAL-a305t-c243de274bb9fe97fc00e10f2a869007cbe81277bcac6f958303cf9fc9a2a95c3</originalsourceid><addsrcrecordid>eNp9kNFKXDEQhkOx0NX2BXoV6K2pk-SczcY7Oa5WEEpZ7W2Yk51oZM3RJCvsQ_jOjV2hd73KQP7vH-Zj7KuE7xLAnBQAUJ0ApQRosL2wH9hMdgqElXp-wGYAWouu7_UndljKA4A0prcz9nqbPOWKMdUd_7XFVGOIHmucEse05heRNmu-mrbZE79KL5TL21eYMq_3xIepAYlSxY1YedwQv4mPJH5j3sV0xy8zvsRWfI4VC9VTfsaHNvBV3a53PCa-WjZgpHrMh_uY8DP7GHBT6Mv7e8RuL5Y3ww9x_fPyaji7Fqihr8KrTq9JmW4cbSBrggcgCUHhYm6bDj_SQipjRo9-Hmy_0KB9sMFbVGh7r4_Yt33vU56et1Sqe2gXprbSKbOQHWgzly2l9imfp1IyBfeU42M7zUlwb9rdXrtr2t1f7c42SO-h0sLpjvK_6v9QfwCa-oZf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781403761</pqid></control><display><type>article</type><title>Uncertainty Quantification and Field Source Inversion for the Continental-Scale Time-Varying Gravity Dataset: A Case Study in SE Tibet, China</title><source>SpringerNature Journals</source><creator>Chen, Zhaohui ; Chen, Shi ; Zhang, Bei ; Wang, Linhai ; Shi, Lei ; Lu, Hongyan ; Liu, Jinzhao ; Xu, Weimin</creator><creatorcontrib>Chen, Zhaohui ; Chen, Shi ; Zhang, Bei ; Wang, Linhai ; Shi, Lei ; Lu, Hongyan ; Liu, Jinzhao ; Xu, Weimin</creatorcontrib><description>Southeastern (SE) Tibet on the Chinese mainland is geologically active and plays an important role in subsurface deformation and mass transfers. Hybrid gravimetry using both absolute and relative gravimeters is an efficient tool for monitoring surface and underground mass transfers. But for hybrid gravity network surveys, uncertainties are influenced by measurement errors, while sparseness of the network and environmental artifacts must be identified and minimized prior to studying gravity change. In this study, Bayesian gravity adjustment (BGA) was applied for the first time to the hybrid gravity network in SE Tibet during 2014–2016, which effectively reduced measurement uncertainties via its estimated scale factors and drift rates, thereby demonstrating its suitability for the large and complex gravity network in SE Tibet. To estimate the field source resolution, reduce environmental artifacts, and invert mass redistributions on the deep crust, an equivalent source inversion (ESI) based on the spatiotemporal smoothness regularization constraint model and the Akaike Bayesian information criterion parameter estimation method was applied to datasets processed by BGA. With respect to processing synthetic gravity data with spatiotemporal noises, the ESI was an effective algorithm, with the optimal field source resolution in SE Tibet being 0.75° × 0.75°. The apparent density change at a depth of 20 km was then inverted, with an average rate of −0.6 to 0.6 kg/m 3 /year, which was approximately 0.22‰ of the average crustal density. In addition, its spatial distribution showed close consistency with active tectonic block boundaries and low-velocity/high-conductivity zones. Comprehensively considering the hydrological effects, GPS observation studies, and geophysical and petrological evidence in the region, this study suggests that the crustal mass redistributions in SE Tibet are possibly controlled by active tectonic block boundaries and fluids distributed in the deep crust.</description><identifier>ISSN: 0033-4553</identifier><identifier>EISSN: 1420-9136</identifier><identifier>DOI: 10.1007/s00024-022-03095-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Active control ; Algorithms ; Artifact identification ; Bayesian analysis ; Bayesian theory ; Boundaries ; Bulk density ; Constraint modelling ; Datasets ; Deformation ; Drift rate ; Earth and Environmental Science ; Earth Sciences ; Fluids ; Geophysics/Geodesy ; Global positioning systems ; GPS ; Gravimetry ; Gravity ; Gravity data ; Gravity meters ; Hydrologic observations ; Hydrology ; Mass ; Measurement ; Parameter estimation ; Probability theory ; Regularization ; Resolution ; Smoothness ; Spatial distribution ; Tectonics ; Uncertainty</subject><ispartof>Pure and applied geophysics, 2023-02, Vol.180 (2), p.683-702</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a305t-c243de274bb9fe97fc00e10f2a869007cbe81277bcac6f958303cf9fc9a2a95c3</citedby><cites>FETCH-LOGICAL-a305t-c243de274bb9fe97fc00e10f2a869007cbe81277bcac6f958303cf9fc9a2a95c3</cites><orcidid>0000-0002-0425-5153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00024-022-03095-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00024-022-03095-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Chen, Zhaohui</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Zhang, Bei</creatorcontrib><creatorcontrib>Wang, Linhai</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Lu, Hongyan</creatorcontrib><creatorcontrib>Liu, Jinzhao</creatorcontrib><creatorcontrib>Xu, Weimin</creatorcontrib><title>Uncertainty Quantification and Field Source Inversion for the Continental-Scale Time-Varying Gravity Dataset: A Case Study in SE Tibet, China</title><title>Pure and applied geophysics</title><addtitle>Pure Appl. Geophys</addtitle><description>Southeastern (SE) Tibet on the Chinese mainland is geologically active and plays an important role in subsurface deformation and mass transfers. Hybrid gravimetry using both absolute and relative gravimeters is an efficient tool for monitoring surface and underground mass transfers. But for hybrid gravity network surveys, uncertainties are influenced by measurement errors, while sparseness of the network and environmental artifacts must be identified and minimized prior to studying gravity change. In this study, Bayesian gravity adjustment (BGA) was applied for the first time to the hybrid gravity network in SE Tibet during 2014–2016, which effectively reduced measurement uncertainties via its estimated scale factors and drift rates, thereby demonstrating its suitability for the large and complex gravity network in SE Tibet. To estimate the field source resolution, reduce environmental artifacts, and invert mass redistributions on the deep crust, an equivalent source inversion (ESI) based on the spatiotemporal smoothness regularization constraint model and the Akaike Bayesian information criterion parameter estimation method was applied to datasets processed by BGA. With respect to processing synthetic gravity data with spatiotemporal noises, the ESI was an effective algorithm, with the optimal field source resolution in SE Tibet being 0.75° × 0.75°. The apparent density change at a depth of 20 km was then inverted, with an average rate of −0.6 to 0.6 kg/m 3 /year, which was approximately 0.22‰ of the average crustal density. In addition, its spatial distribution showed close consistency with active tectonic block boundaries and low-velocity/high-conductivity zones. Comprehensively considering the hydrological effects, GPS observation studies, and geophysical and petrological evidence in the region, this study suggests that the crustal mass redistributions in SE Tibet are possibly controlled by active tectonic block boundaries and fluids distributed in the deep crust.</description><subject>Active control</subject><subject>Algorithms</subject><subject>Artifact identification</subject><subject>Bayesian analysis</subject><subject>Bayesian theory</subject><subject>Boundaries</subject><subject>Bulk density</subject><subject>Constraint modelling</subject><subject>Datasets</subject><subject>Deformation</subject><subject>Drift rate</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fluids</subject><subject>Geophysics/Geodesy</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Gravimetry</subject><subject>Gravity</subject><subject>Gravity data</subject><subject>Gravity meters</subject><subject>Hydrologic observations</subject><subject>Hydrology</subject><subject>Mass</subject><subject>Measurement</subject><subject>Parameter estimation</subject><subject>Probability theory</subject><subject>Regularization</subject><subject>Resolution</subject><subject>Smoothness</subject><subject>Spatial distribution</subject><subject>Tectonics</subject><subject>Uncertainty</subject><issn>0033-4553</issn><issn>1420-9136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kNFKXDEQhkOx0NX2BXoV6K2pk-SczcY7Oa5WEEpZ7W2Yk51oZM3RJCvsQ_jOjV2hd73KQP7vH-Zj7KuE7xLAnBQAUJ0ApQRosL2wH9hMdgqElXp-wGYAWouu7_UndljKA4A0prcz9nqbPOWKMdUd_7XFVGOIHmucEse05heRNmu-mrbZE79KL5TL21eYMq_3xIepAYlSxY1YedwQv4mPJH5j3sV0xy8zvsRWfI4VC9VTfsaHNvBV3a53PCa-WjZgpHrMh_uY8DP7GHBT6Mv7e8RuL5Y3ww9x_fPyaji7Fqihr8KrTq9JmW4cbSBrggcgCUHhYm6bDj_SQipjRo9-Hmy_0KB9sMFbVGh7r4_Yt33vU56et1Sqe2gXprbSKbOQHWgzly2l9imfp1IyBfeU42M7zUlwb9rdXrtr2t1f7c42SO-h0sLpjvK_6v9QfwCa-oZf</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Chen, Zhaohui</creator><creator>Chen, Shi</creator><creator>Zhang, Bei</creator><creator>Wang, Linhai</creator><creator>Shi, Lei</creator><creator>Lu, Hongyan</creator><creator>Liu, Jinzhao</creator><creator>Xu, Weimin</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0425-5153</orcidid></search><sort><creationdate>20230201</creationdate><title>Uncertainty Quantification and Field Source Inversion for the Continental-Scale Time-Varying Gravity Dataset: A Case Study in SE Tibet, China</title><author>Chen, Zhaohui ; Chen, Shi ; Zhang, Bei ; Wang, Linhai ; Shi, Lei ; Lu, Hongyan ; Liu, Jinzhao ; Xu, Weimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a305t-c243de274bb9fe97fc00e10f2a869007cbe81277bcac6f958303cf9fc9a2a95c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active control</topic><topic>Algorithms</topic><topic>Artifact identification</topic><topic>Bayesian analysis</topic><topic>Bayesian theory</topic><topic>Boundaries</topic><topic>Bulk density</topic><topic>Constraint modelling</topic><topic>Datasets</topic><topic>Deformation</topic><topic>Drift rate</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fluids</topic><topic>Geophysics/Geodesy</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Gravimetry</topic><topic>Gravity</topic><topic>Gravity data</topic><topic>Gravity meters</topic><topic>Hydrologic observations</topic><topic>Hydrology</topic><topic>Mass</topic><topic>Measurement</topic><topic>Parameter estimation</topic><topic>Probability theory</topic><topic>Regularization</topic><topic>Resolution</topic><topic>Smoothness</topic><topic>Spatial distribution</topic><topic>Tectonics</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhaohui</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Zhang, Bei</creatorcontrib><creatorcontrib>Wang, Linhai</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Lu, Hongyan</creatorcontrib><creatorcontrib>Liu, Jinzhao</creatorcontrib><creatorcontrib>Xu, Weimin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Pure and applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhaohui</au><au>Chen, Shi</au><au>Zhang, Bei</au><au>Wang, Linhai</au><au>Shi, Lei</au><au>Lu, Hongyan</au><au>Liu, Jinzhao</au><au>Xu, Weimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty Quantification and Field Source Inversion for the Continental-Scale Time-Varying Gravity Dataset: A Case Study in SE Tibet, China</atitle><jtitle>Pure and applied geophysics</jtitle><stitle>Pure Appl. Geophys</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>180</volume><issue>2</issue><spage>683</spage><epage>702</epage><pages>683-702</pages><issn>0033-4553</issn><eissn>1420-9136</eissn><abstract>Southeastern (SE) Tibet on the Chinese mainland is geologically active and plays an important role in subsurface deformation and mass transfers. Hybrid gravimetry using both absolute and relative gravimeters is an efficient tool for monitoring surface and underground mass transfers. But for hybrid gravity network surveys, uncertainties are influenced by measurement errors, while sparseness of the network and environmental artifacts must be identified and minimized prior to studying gravity change. In this study, Bayesian gravity adjustment (BGA) was applied for the first time to the hybrid gravity network in SE Tibet during 2014–2016, which effectively reduced measurement uncertainties via its estimated scale factors and drift rates, thereby demonstrating its suitability for the large and complex gravity network in SE Tibet. To estimate the field source resolution, reduce environmental artifacts, and invert mass redistributions on the deep crust, an equivalent source inversion (ESI) based on the spatiotemporal smoothness regularization constraint model and the Akaike Bayesian information criterion parameter estimation method was applied to datasets processed by BGA. With respect to processing synthetic gravity data with spatiotemporal noises, the ESI was an effective algorithm, with the optimal field source resolution in SE Tibet being 0.75° × 0.75°. The apparent density change at a depth of 20 km was then inverted, with an average rate of −0.6 to 0.6 kg/m 3 /year, which was approximately 0.22‰ of the average crustal density. In addition, its spatial distribution showed close consistency with active tectonic block boundaries and low-velocity/high-conductivity zones. Comprehensively considering the hydrological effects, GPS observation studies, and geophysical and petrological evidence in the region, this study suggests that the crustal mass redistributions in SE Tibet are possibly controlled by active tectonic block boundaries and fluids distributed in the deep crust.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00024-022-03095-9</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-0425-5153</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0033-4553
ispartof Pure and applied geophysics, 2023-02, Vol.180 (2), p.683-702
issn 0033-4553
1420-9136
language eng
recordid cdi_proquest_journals_2781403761
source SpringerNature Journals
subjects Active control
Algorithms
Artifact identification
Bayesian analysis
Bayesian theory
Boundaries
Bulk density
Constraint modelling
Datasets
Deformation
Drift rate
Earth and Environmental Science
Earth Sciences
Fluids
Geophysics/Geodesy
Global positioning systems
GPS
Gravimetry
Gravity
Gravity data
Gravity meters
Hydrologic observations
Hydrology
Mass
Measurement
Parameter estimation
Probability theory
Regularization
Resolution
Smoothness
Spatial distribution
Tectonics
Uncertainty
title Uncertainty Quantification and Field Source Inversion for the Continental-Scale Time-Varying Gravity Dataset: A Case Study in SE Tibet, China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T14%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20Quantification%20and%20Field%20Source%20Inversion%20for%20the%20Continental-Scale%20Time-Varying%20Gravity%20Dataset:%20A%20Case%20Study%20in%20SE%20Tibet,%20China&rft.jtitle=Pure%20and%20applied%20geophysics&rft.au=Chen,%20Zhaohui&rft.date=2023-02-01&rft.volume=180&rft.issue=2&rft.spage=683&rft.epage=702&rft.pages=683-702&rft.issn=0033-4553&rft.eissn=1420-9136&rft_id=info:doi/10.1007/s00024-022-03095-9&rft_dat=%3Cproquest_cross%3E2781403761%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2781403761&rft_id=info:pmid/&rfr_iscdi=true