Mechanical characterization of high volume fraction Al7075-Al2O3 composite fabricated by semisolid powder processing

The mechanical properties and physical characteristics of aluminum alloy composites can be significantly improved by adding reinforcing phases. However, the high loading of the reinforcement phase in Al7075-Al 2 O 3 composites has not been thoroughly studied. In this work, a combination of semisolid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced manufacturing technology 2023-03, Vol.125 (5-6), p.2569-2580
Hauptverfasser: Aghajani, Saeed, Pouyafar, Vahid, Meshkabadi, Ramin, Volinsky, Alex A., Bolouri, Amir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2580
container_issue 5-6
container_start_page 2569
container_title International journal of advanced manufacturing technology
container_volume 125
creator Aghajani, Saeed
Pouyafar, Vahid
Meshkabadi, Ramin
Volinsky, Alex A.
Bolouri, Amir
description The mechanical properties and physical characteristics of aluminum alloy composites can be significantly improved by adding reinforcing phases. However, the high loading of the reinforcement phase in Al7075-Al 2 O 3 composites has not been thoroughly studied. In this work, a combination of semisolid metal powder processing and powder metallurgy is used to process and manufacture Al7075-Al 2 O 3 composites with a high reinforcement fraction of > 40 vol.%. The effects of processing parameters on the microstructures and mechanical properties of the composite material are discussed in detail. The loading limits of the high volume Al 2 O 3 reinforcement in Al7075 composites are identified and linked to the processing parameters. A methodology is introduced to estimate the consolidation temperature of Al7075 alloy using compaction testing. Al 2 O 3 particles (the average particle size of 120 µm) were mechanically milled with Al7075 powder (the average particle size of 20 µm) for 10 min and 5 h using a high-energy planetary ball mill. The mixture was then compacted in the semisolid state at 615 °C under the compaction pressures of 50 MPa and 100 MPa. By increasing the milling time from 10 min to 5 h, the deformation of aluminum powders and the fracture of Al 2 O 3 reinforcement particles occur, restricting the loading limit of reinforcement. The milling time also shows a dominant effect on the powder morphology, microstructure, and mechanical properties of Al7075-Al 2 O 3 composites. Increasing compaction pressure from 50 to 100 MPa significantly improved the compressive strength of the composite from 218 to 652 MPa. Al7075-Al 2 O 3 composite with 40 vol.% of reinforcing phase exhibits the highest hardness of 198.2 HV and 96.9% relative density when it is milled for 5 h and compacted at 100 MPa. However, this composite shows the highest strength of 652 MPa when it is milled for 10 min. By increasing the reinforcing phase to 50 vol.% and 60 vol.%, the hardness, density, and compressive strength of composites decreased. The composites with 60 vol.% of reinforcing phase appeared overloaded. Results show that semisolid metal powder processing has huge potential for the fabrication of high loading Al 2 O 3 in Al7075 matrix with near theoretical density.
doi_str_mv 10.1007/s00170-023-10881-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2781403759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781403759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-2beb2d3e22fea4f044f21637b561f5a70b4941a023351f7d069f63700623d3ea3</originalsourceid><addsrcrecordid>eNp9UDtPwzAQthBIlMIfYLLEbDjbiZ2MVcVLKuoCs-UkdusqiYOdgsqvx6FIbEx3uu-l-xC6pnBLAeRdBKASCDBOKBQFJeUJmtGMc8KB5qdoBkwUhEtRnKOLGHeJLqgoZmh8MfVW967WLU5L0PVogvvSo_M99hZv3WaLP3y77wy2EzrdF60EmZNFy9Yc174bfHRjwnUVktFoGlwdcDSdi751DR78Z2MCHoKvTYyu31yiM6vbaK5-5xy9Pdy_Lp_Iav34vFysSM0FHwmrTMUabhizRmcWsswyKrisckFtriVUWZlRnZ7mObWyAVHaBAMIxpNM8zm6Ofqm6Pe9iaPa-X3oU6RisqAZcJmXicWOrDr4GIOxagiu0-GgKKipXXVsV6Ug9dOumkT8KIqJ3G9M-LP-R_UN-VR9Iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781403759</pqid></control><display><type>article</type><title>Mechanical characterization of high volume fraction Al7075-Al2O3 composite fabricated by semisolid powder processing</title><source>SpringerLink Journals</source><creator>Aghajani, Saeed ; Pouyafar, Vahid ; Meshkabadi, Ramin ; Volinsky, Alex A. ; Bolouri, Amir</creator><creatorcontrib>Aghajani, Saeed ; Pouyafar, Vahid ; Meshkabadi, Ramin ; Volinsky, Alex A. ; Bolouri, Amir</creatorcontrib><description>The mechanical properties and physical characteristics of aluminum alloy composites can be significantly improved by adding reinforcing phases. However, the high loading of the reinforcement phase in Al7075-Al 2 O 3 composites has not been thoroughly studied. In this work, a combination of semisolid metal powder processing and powder metallurgy is used to process and manufacture Al7075-Al 2 O 3 composites with a high reinforcement fraction of &gt; 40 vol.%. The effects of processing parameters on the microstructures and mechanical properties of the composite material are discussed in detail. The loading limits of the high volume Al 2 O 3 reinforcement in Al7075 composites are identified and linked to the processing parameters. A methodology is introduced to estimate the consolidation temperature of Al7075 alloy using compaction testing. Al 2 O 3 particles (the average particle size of 120 µm) were mechanically milled with Al7075 powder (the average particle size of 20 µm) for 10 min and 5 h using a high-energy planetary ball mill. The mixture was then compacted in the semisolid state at 615 °C under the compaction pressures of 50 MPa and 100 MPa. By increasing the milling time from 10 min to 5 h, the deformation of aluminum powders and the fracture of Al 2 O 3 reinforcement particles occur, restricting the loading limit of reinforcement. The milling time also shows a dominant effect on the powder morphology, microstructure, and mechanical properties of Al7075-Al 2 O 3 composites. Increasing compaction pressure from 50 to 100 MPa significantly improved the compressive strength of the composite from 218 to 652 MPa. Al7075-Al 2 O 3 composite with 40 vol.% of reinforcing phase exhibits the highest hardness of 198.2 HV and 96.9% relative density when it is milled for 5 h and compacted at 100 MPa. However, this composite shows the highest strength of 652 MPa when it is milled for 10 min. By increasing the reinforcing phase to 50 vol.% and 60 vol.%, the hardness, density, and compressive strength of composites decreased. The composites with 60 vol.% of reinforcing phase appeared overloaded. Results show that semisolid metal powder processing has huge potential for the fabrication of high loading Al 2 O 3 in Al7075 matrix with near theoretical density.</description><identifier>ISSN: 0268-3768</identifier><identifier>EISSN: 1433-3015</identifier><identifier>DOI: 10.1007/s00170-023-10881-9</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Aluminum base alloys ; Aluminum oxide ; CAE) and Design ; Composite materials ; Compressive strength ; Computer-Aided Engineering (CAD ; Engineering ; Hardness ; Industrial and Production Engineering ; Mechanical Engineering ; Mechanical properties ; Media Management ; Metal powders ; Microstructure ; Original Article ; Overloading ; Parameter identification ; Particle size ; Physical properties ; Powder metallurgy ; Process parameters ; Reinforcement ; Semisolids ; Specific gravity ; Theoretical density</subject><ispartof>International journal of advanced manufacturing technology, 2023-03, Vol.125 (5-6), p.2569-2580</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-2beb2d3e22fea4f044f21637b561f5a70b4941a023351f7d069f63700623d3ea3</citedby><cites>FETCH-LOGICAL-c363t-2beb2d3e22fea4f044f21637b561f5a70b4941a023351f7d069f63700623d3ea3</cites><orcidid>0000-0001-7624-5491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00170-023-10881-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00170-023-10881-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Aghajani, Saeed</creatorcontrib><creatorcontrib>Pouyafar, Vahid</creatorcontrib><creatorcontrib>Meshkabadi, Ramin</creatorcontrib><creatorcontrib>Volinsky, Alex A.</creatorcontrib><creatorcontrib>Bolouri, Amir</creatorcontrib><title>Mechanical characterization of high volume fraction Al7075-Al2O3 composite fabricated by semisolid powder processing</title><title>International journal of advanced manufacturing technology</title><addtitle>Int J Adv Manuf Technol</addtitle><description>The mechanical properties and physical characteristics of aluminum alloy composites can be significantly improved by adding reinforcing phases. However, the high loading of the reinforcement phase in Al7075-Al 2 O 3 composites has not been thoroughly studied. In this work, a combination of semisolid metal powder processing and powder metallurgy is used to process and manufacture Al7075-Al 2 O 3 composites with a high reinforcement fraction of &gt; 40 vol.%. The effects of processing parameters on the microstructures and mechanical properties of the composite material are discussed in detail. The loading limits of the high volume Al 2 O 3 reinforcement in Al7075 composites are identified and linked to the processing parameters. A methodology is introduced to estimate the consolidation temperature of Al7075 alloy using compaction testing. Al 2 O 3 particles (the average particle size of 120 µm) were mechanically milled with Al7075 powder (the average particle size of 20 µm) for 10 min and 5 h using a high-energy planetary ball mill. The mixture was then compacted in the semisolid state at 615 °C under the compaction pressures of 50 MPa and 100 MPa. By increasing the milling time from 10 min to 5 h, the deformation of aluminum powders and the fracture of Al 2 O 3 reinforcement particles occur, restricting the loading limit of reinforcement. The milling time also shows a dominant effect on the powder morphology, microstructure, and mechanical properties of Al7075-Al 2 O 3 composites. Increasing compaction pressure from 50 to 100 MPa significantly improved the compressive strength of the composite from 218 to 652 MPa. Al7075-Al 2 O 3 composite with 40 vol.% of reinforcing phase exhibits the highest hardness of 198.2 HV and 96.9% relative density when it is milled for 5 h and compacted at 100 MPa. However, this composite shows the highest strength of 652 MPa when it is milled for 10 min. By increasing the reinforcing phase to 50 vol.% and 60 vol.%, the hardness, density, and compressive strength of composites decreased. The composites with 60 vol.% of reinforcing phase appeared overloaded. Results show that semisolid metal powder processing has huge potential for the fabrication of high loading Al 2 O 3 in Al7075 matrix with near theoretical density.</description><subject>Aluminum base alloys</subject><subject>Aluminum oxide</subject><subject>CAE) and Design</subject><subject>Composite materials</subject><subject>Compressive strength</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Engineering</subject><subject>Hardness</subject><subject>Industrial and Production Engineering</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Media Management</subject><subject>Metal powders</subject><subject>Microstructure</subject><subject>Original Article</subject><subject>Overloading</subject><subject>Parameter identification</subject><subject>Particle size</subject><subject>Physical properties</subject><subject>Powder metallurgy</subject><subject>Process parameters</subject><subject>Reinforcement</subject><subject>Semisolids</subject><subject>Specific gravity</subject><subject>Theoretical density</subject><issn>0268-3768</issn><issn>1433-3015</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UDtPwzAQthBIlMIfYLLEbDjbiZ2MVcVLKuoCs-UkdusqiYOdgsqvx6FIbEx3uu-l-xC6pnBLAeRdBKASCDBOKBQFJeUJmtGMc8KB5qdoBkwUhEtRnKOLGHeJLqgoZmh8MfVW967WLU5L0PVogvvSo_M99hZv3WaLP3y77wy2EzrdF60EmZNFy9Yc174bfHRjwnUVktFoGlwdcDSdi751DR78Z2MCHoKvTYyu31yiM6vbaK5-5xy9Pdy_Lp_Iav34vFysSM0FHwmrTMUabhizRmcWsswyKrisckFtriVUWZlRnZ7mObWyAVHaBAMIxpNM8zm6Ofqm6Pe9iaPa-X3oU6RisqAZcJmXicWOrDr4GIOxagiu0-GgKKipXXVsV6Ug9dOumkT8KIqJ3G9M-LP-R_UN-VR9Iw</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Aghajani, Saeed</creator><creator>Pouyafar, Vahid</creator><creator>Meshkabadi, Ramin</creator><creator>Volinsky, Alex A.</creator><creator>Bolouri, Amir</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7624-5491</orcidid></search><sort><creationdate>20230301</creationdate><title>Mechanical characterization of high volume fraction Al7075-Al2O3 composite fabricated by semisolid powder processing</title><author>Aghajani, Saeed ; Pouyafar, Vahid ; Meshkabadi, Ramin ; Volinsky, Alex A. ; Bolouri, Amir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-2beb2d3e22fea4f044f21637b561f5a70b4941a023351f7d069f63700623d3ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum base alloys</topic><topic>Aluminum oxide</topic><topic>CAE) and Design</topic><topic>Composite materials</topic><topic>Compressive strength</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Engineering</topic><topic>Hardness</topic><topic>Industrial and Production Engineering</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Media Management</topic><topic>Metal powders</topic><topic>Microstructure</topic><topic>Original Article</topic><topic>Overloading</topic><topic>Parameter identification</topic><topic>Particle size</topic><topic>Physical properties</topic><topic>Powder metallurgy</topic><topic>Process parameters</topic><topic>Reinforcement</topic><topic>Semisolids</topic><topic>Specific gravity</topic><topic>Theoretical density</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aghajani, Saeed</creatorcontrib><creatorcontrib>Pouyafar, Vahid</creatorcontrib><creatorcontrib>Meshkabadi, Ramin</creatorcontrib><creatorcontrib>Volinsky, Alex A.</creatorcontrib><creatorcontrib>Bolouri, Amir</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of advanced manufacturing technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aghajani, Saeed</au><au>Pouyafar, Vahid</au><au>Meshkabadi, Ramin</au><au>Volinsky, Alex A.</au><au>Bolouri, Amir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical characterization of high volume fraction Al7075-Al2O3 composite fabricated by semisolid powder processing</atitle><jtitle>International journal of advanced manufacturing technology</jtitle><stitle>Int J Adv Manuf Technol</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>125</volume><issue>5-6</issue><spage>2569</spage><epage>2580</epage><pages>2569-2580</pages><issn>0268-3768</issn><eissn>1433-3015</eissn><abstract>The mechanical properties and physical characteristics of aluminum alloy composites can be significantly improved by adding reinforcing phases. However, the high loading of the reinforcement phase in Al7075-Al 2 O 3 composites has not been thoroughly studied. In this work, a combination of semisolid metal powder processing and powder metallurgy is used to process and manufacture Al7075-Al 2 O 3 composites with a high reinforcement fraction of &gt; 40 vol.%. The effects of processing parameters on the microstructures and mechanical properties of the composite material are discussed in detail. The loading limits of the high volume Al 2 O 3 reinforcement in Al7075 composites are identified and linked to the processing parameters. A methodology is introduced to estimate the consolidation temperature of Al7075 alloy using compaction testing. Al 2 O 3 particles (the average particle size of 120 µm) were mechanically milled with Al7075 powder (the average particle size of 20 µm) for 10 min and 5 h using a high-energy planetary ball mill. The mixture was then compacted in the semisolid state at 615 °C under the compaction pressures of 50 MPa and 100 MPa. By increasing the milling time from 10 min to 5 h, the deformation of aluminum powders and the fracture of Al 2 O 3 reinforcement particles occur, restricting the loading limit of reinforcement. The milling time also shows a dominant effect on the powder morphology, microstructure, and mechanical properties of Al7075-Al 2 O 3 composites. Increasing compaction pressure from 50 to 100 MPa significantly improved the compressive strength of the composite from 218 to 652 MPa. Al7075-Al 2 O 3 composite with 40 vol.% of reinforcing phase exhibits the highest hardness of 198.2 HV and 96.9% relative density when it is milled for 5 h and compacted at 100 MPa. However, this composite shows the highest strength of 652 MPa when it is milled for 10 min. By increasing the reinforcing phase to 50 vol.% and 60 vol.%, the hardness, density, and compressive strength of composites decreased. The composites with 60 vol.% of reinforcing phase appeared overloaded. Results show that semisolid metal powder processing has huge potential for the fabrication of high loading Al 2 O 3 in Al7075 matrix with near theoretical density.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00170-023-10881-9</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7624-5491</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-3768
ispartof International journal of advanced manufacturing technology, 2023-03, Vol.125 (5-6), p.2569-2580
issn 0268-3768
1433-3015
language eng
recordid cdi_proquest_journals_2781403759
source SpringerLink Journals
subjects Aluminum base alloys
Aluminum oxide
CAE) and Design
Composite materials
Compressive strength
Computer-Aided Engineering (CAD
Engineering
Hardness
Industrial and Production Engineering
Mechanical Engineering
Mechanical properties
Media Management
Metal powders
Microstructure
Original Article
Overloading
Parameter identification
Particle size
Physical properties
Powder metallurgy
Process parameters
Reinforcement
Semisolids
Specific gravity
Theoretical density
title Mechanical characterization of high volume fraction Al7075-Al2O3 composite fabricated by semisolid powder processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20characterization%20of%20high%20volume%20fraction%20Al7075-Al2O3%20composite%20fabricated%20by%20semisolid%20powder%20processing&rft.jtitle=International%20journal%20of%20advanced%20manufacturing%20technology&rft.au=Aghajani,%20Saeed&rft.date=2023-03-01&rft.volume=125&rft.issue=5-6&rft.spage=2569&rft.epage=2580&rft.pages=2569-2580&rft.issn=0268-3768&rft.eissn=1433-3015&rft_id=info:doi/10.1007/s00170-023-10881-9&rft_dat=%3Cproquest_cross%3E2781403759%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2781403759&rft_id=info:pmid/&rfr_iscdi=true