Superior dielectric and varistor properties of ZnO or SnO2 diffused calcium copper titanate ceramics

Sub-micrometer-sized (0.33 μm) polycrystalline powders of calcium copper titanate (CCTO) were synthesized via the solgel method. Compacted calcined powders were sintered at 900 °C/2h to obtain porous (95% density) ceramics. X-ray structural investigations revealed the presence of ZnO or SnO2 traces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2023-03, Vol.133 (9)
Hauptverfasser: Dhavala, Lokeswararao, V, Sai Muthukumar, Kollipara, Vijay Sai, Kalidindi B. R., Varma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Journal of applied physics
container_volume 133
creator Dhavala, Lokeswararao
V, Sai Muthukumar
Kollipara, Vijay Sai
Kalidindi B. R., Varma
description Sub-micrometer-sized (0.33 μm) polycrystalline powders of calcium copper titanate (CCTO) were synthesized via the solgel method. Compacted calcined powders were sintered at 900 °C/2h to obtain porous (95% density) ceramics. X-ray structural investigations revealed the presence of ZnO or SnO2 traces in the bulk of the CCTO ceramics. Scanning electron microscopy and energy dispersive spectroscopic studies confirmed the diffusion and the segregation of these oxides at the grain boundaries. The dielectric and varistor properties of the ZnO or SnO2 diffused samples were found to be superior to that of pristine CCTO ceramics. For instance, the dielectric constant (ɛ′) of ZnO diffused ceramics exhibited a value as high as 2.4 × 104 (1 kHz, at room temperature) and a dielectric loss (D) of 0.059. Similarly, SnO2 diffused ceramics exhibited a dielectric constant of 2.7 × 104 (1 kHz, at room temperature) associated with a dielectric loss of 0.047. The figure of merit of varistor performance, i.e., nonlinear coefficient (α = 10.6), of the SnO2 diffused sample is significantly higher than that of ZnO diffused (α = 7.4) and pristine CCTO (α = 4.5) ceramics. The dielectric data obtained for both the pristine and ZnO or SnO2 diffused ceramics were rationalized by invoking Cole–Cole analysis. The thermal activation energy was estimated from the temperature-dependent dielectric data besides current (I)–voltage (V) characteristics. Equivalent circuit modeling of the Nyquist plots demonstrated that the inclusion of ZnO and SnO2 layers in CCTO ceramics remarkably improved the grain boundary resistance (Rgb) by 5-fold and 20-fold, respectively, which resulted in making CCTO a better dielectric. This methodology of fabricating ceramics via interfacial engineering could pave the way for obtaining superior CCTO ceramics associated with exotic functional properties.
doi_str_mv 10.1063/5.0139359
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2781373986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781373986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-70f271c15fd452c5dc79d126eaeb03bd20077f0079c959de6a4bbd8669f97bef3</originalsourceid><addsrcrecordid>eNqd0EtLAzEQB_AgCtbHwW8Q8KSwNY9ms3MU8QWFHqoXLyGbB6S0mzXJCn57Iy149zKB4ZfM5I_QFSVzSlp-J-aEcuACjtCMkg4aKQQ5RjNCGG06kHCKznLeEEJpx2GG7HoaXQoxYRvc1pmSgsF6sPhLp5BL7Y8pVlGCyzh6_DGscG2uhxWrN7yfsrPY6K0J0w6bOFaKSyh60MVh45LeBZMv0InX2-wuD-c5en96fHt4aZar59eH-2VjGLDSSOKZpIYKbxeCGWGNBEtZ67TrCe8tI0RKXwsYEGBdqxd9b7u2BQ-yd56fo-v9u3Xnz8nlojZxSkMdqZjsKJccuraqm70yKeacnFdjCjudvhUl6jdEJdQhxGpv9zab-qkS4vA__BXTH1Sj9fwHWeiBDQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781373986</pqid></control><display><type>article</type><title>Superior dielectric and varistor properties of ZnO or SnO2 diffused calcium copper titanate ceramics</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Dhavala, Lokeswararao ; V, Sai Muthukumar ; Kollipara, Vijay Sai ; Kalidindi B. R., Varma</creator><creatorcontrib>Dhavala, Lokeswararao ; V, Sai Muthukumar ; Kollipara, Vijay Sai ; Kalidindi B. R., Varma</creatorcontrib><description>Sub-micrometer-sized (0.33 μm) polycrystalline powders of calcium copper titanate (CCTO) were synthesized via the solgel method. Compacted calcined powders were sintered at 900 °C/2h to obtain porous (&lt;80% density) pellets. Subsequently, ZnO or SnO2 pastes (∼10 μm grain size) were smeared on either side of the pellets and sintered at 1100 °C/15 h, which yielded dense (&gt;95% density) ceramics. X-ray structural investigations revealed the presence of ZnO or SnO2 traces in the bulk of the CCTO ceramics. Scanning electron microscopy and energy dispersive spectroscopic studies confirmed the diffusion and the segregation of these oxides at the grain boundaries. The dielectric and varistor properties of the ZnO or SnO2 diffused samples were found to be superior to that of pristine CCTO ceramics. For instance, the dielectric constant (ɛ′) of ZnO diffused ceramics exhibited a value as high as 2.4 × 104 (1 kHz, at room temperature) and a dielectric loss (D) of 0.059. Similarly, SnO2 diffused ceramics exhibited a dielectric constant of 2.7 × 104 (1 kHz, at room temperature) associated with a dielectric loss of 0.047. The figure of merit of varistor performance, i.e., nonlinear coefficient (α = 10.6), of the SnO2 diffused sample is significantly higher than that of ZnO diffused (α = 7.4) and pristine CCTO (α = 4.5) ceramics. The dielectric data obtained for both the pristine and ZnO or SnO2 diffused ceramics were rationalized by invoking Cole–Cole analysis. The thermal activation energy was estimated from the temperature-dependent dielectric data besides current (I)–voltage (V) characteristics. Equivalent circuit modeling of the Nyquist plots demonstrated that the inclusion of ZnO and SnO2 layers in CCTO ceramics remarkably improved the grain boundary resistance (Rgb) by 5-fold and 20-fold, respectively, which resulted in making CCTO a better dielectric. This methodology of fabricating ceramics via interfacial engineering could pave the way for obtaining superior CCTO ceramics associated with exotic functional properties.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0139359</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Calcium ; Ceramic powders ; Ceramics ; Circuits ; Copper ; Density ; Dielectric loss ; Equivalent circuits ; Figure of merit ; Grain boundaries ; Grain size ; Nyquist plots ; Pastes ; Pellets ; Permittivity ; Room temperature ; Sintering (powder metallurgy) ; Temperature dependence ; Tin dioxide ; Zinc oxide</subject><ispartof>Journal of applied physics, 2023-03, Vol.133 (9)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-70f271c15fd452c5dc79d126eaeb03bd20077f0079c959de6a4bbd8669f97bef3</citedby><cites>FETCH-LOGICAL-c292t-70f271c15fd452c5dc79d126eaeb03bd20077f0079c959de6a4bbd8669f97bef3</cites><orcidid>0000-0001-5095-1734 ; 0000-0003-4177-4187 ; 0000-0003-3674-0011 ; 0000-0002-6284-3957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0139359$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Dhavala, Lokeswararao</creatorcontrib><creatorcontrib>V, Sai Muthukumar</creatorcontrib><creatorcontrib>Kollipara, Vijay Sai</creatorcontrib><creatorcontrib>Kalidindi B. R., Varma</creatorcontrib><title>Superior dielectric and varistor properties of ZnO or SnO2 diffused calcium copper titanate ceramics</title><title>Journal of applied physics</title><description>Sub-micrometer-sized (0.33 μm) polycrystalline powders of calcium copper titanate (CCTO) were synthesized via the solgel method. Compacted calcined powders were sintered at 900 °C/2h to obtain porous (&lt;80% density) pellets. Subsequently, ZnO or SnO2 pastes (∼10 μm grain size) were smeared on either side of the pellets and sintered at 1100 °C/15 h, which yielded dense (&gt;95% density) ceramics. X-ray structural investigations revealed the presence of ZnO or SnO2 traces in the bulk of the CCTO ceramics. Scanning electron microscopy and energy dispersive spectroscopic studies confirmed the diffusion and the segregation of these oxides at the grain boundaries. The dielectric and varistor properties of the ZnO or SnO2 diffused samples were found to be superior to that of pristine CCTO ceramics. For instance, the dielectric constant (ɛ′) of ZnO diffused ceramics exhibited a value as high as 2.4 × 104 (1 kHz, at room temperature) and a dielectric loss (D) of 0.059. Similarly, SnO2 diffused ceramics exhibited a dielectric constant of 2.7 × 104 (1 kHz, at room temperature) associated with a dielectric loss of 0.047. The figure of merit of varistor performance, i.e., nonlinear coefficient (α = 10.6), of the SnO2 diffused sample is significantly higher than that of ZnO diffused (α = 7.4) and pristine CCTO (α = 4.5) ceramics. The dielectric data obtained for both the pristine and ZnO or SnO2 diffused ceramics were rationalized by invoking Cole–Cole analysis. The thermal activation energy was estimated from the temperature-dependent dielectric data besides current (I)–voltage (V) characteristics. Equivalent circuit modeling of the Nyquist plots demonstrated that the inclusion of ZnO and SnO2 layers in CCTO ceramics remarkably improved the grain boundary resistance (Rgb) by 5-fold and 20-fold, respectively, which resulted in making CCTO a better dielectric. This methodology of fabricating ceramics via interfacial engineering could pave the way for obtaining superior CCTO ceramics associated with exotic functional properties.</description><subject>Applied physics</subject><subject>Calcium</subject><subject>Ceramic powders</subject><subject>Ceramics</subject><subject>Circuits</subject><subject>Copper</subject><subject>Density</subject><subject>Dielectric loss</subject><subject>Equivalent circuits</subject><subject>Figure of merit</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Nyquist plots</subject><subject>Pastes</subject><subject>Pellets</subject><subject>Permittivity</subject><subject>Room temperature</subject><subject>Sintering (powder metallurgy)</subject><subject>Temperature dependence</subject><subject>Tin dioxide</subject><subject>Zinc oxide</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLAzEQB_AgCtbHwW8Q8KSwNY9ms3MU8QWFHqoXLyGbB6S0mzXJCn57Iy149zKB4ZfM5I_QFSVzSlp-J-aEcuACjtCMkg4aKQQ5RjNCGG06kHCKznLeEEJpx2GG7HoaXQoxYRvc1pmSgsF6sPhLp5BL7Y8pVlGCyzh6_DGscG2uhxWrN7yfsrPY6K0J0w6bOFaKSyh60MVh45LeBZMv0InX2-wuD-c5en96fHt4aZar59eH-2VjGLDSSOKZpIYKbxeCGWGNBEtZ67TrCe8tI0RKXwsYEGBdqxd9b7u2BQ-yd56fo-v9u3Xnz8nlojZxSkMdqZjsKJccuraqm70yKeacnFdjCjudvhUl6jdEJdQhxGpv9zab-qkS4vA__BXTH1Sj9fwHWeiBDQ</recordid><startdate>20230307</startdate><enddate>20230307</enddate><creator>Dhavala, Lokeswararao</creator><creator>V, Sai Muthukumar</creator><creator>Kollipara, Vijay Sai</creator><creator>Kalidindi B. R., Varma</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5095-1734</orcidid><orcidid>https://orcid.org/0000-0003-4177-4187</orcidid><orcidid>https://orcid.org/0000-0003-3674-0011</orcidid><orcidid>https://orcid.org/0000-0002-6284-3957</orcidid></search><sort><creationdate>20230307</creationdate><title>Superior dielectric and varistor properties of ZnO or SnO2 diffused calcium copper titanate ceramics</title><author>Dhavala, Lokeswararao ; V, Sai Muthukumar ; Kollipara, Vijay Sai ; Kalidindi B. R., Varma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-70f271c15fd452c5dc79d126eaeb03bd20077f0079c959de6a4bbd8669f97bef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied physics</topic><topic>Calcium</topic><topic>Ceramic powders</topic><topic>Ceramics</topic><topic>Circuits</topic><topic>Copper</topic><topic>Density</topic><topic>Dielectric loss</topic><topic>Equivalent circuits</topic><topic>Figure of merit</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Nyquist plots</topic><topic>Pastes</topic><topic>Pellets</topic><topic>Permittivity</topic><topic>Room temperature</topic><topic>Sintering (powder metallurgy)</topic><topic>Temperature dependence</topic><topic>Tin dioxide</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhavala, Lokeswararao</creatorcontrib><creatorcontrib>V, Sai Muthukumar</creatorcontrib><creatorcontrib>Kollipara, Vijay Sai</creatorcontrib><creatorcontrib>Kalidindi B. R., Varma</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhavala, Lokeswararao</au><au>V, Sai Muthukumar</au><au>Kollipara, Vijay Sai</au><au>Kalidindi B. R., Varma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superior dielectric and varistor properties of ZnO or SnO2 diffused calcium copper titanate ceramics</atitle><jtitle>Journal of applied physics</jtitle><date>2023-03-07</date><risdate>2023</risdate><volume>133</volume><issue>9</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Sub-micrometer-sized (0.33 μm) polycrystalline powders of calcium copper titanate (CCTO) were synthesized via the solgel method. Compacted calcined powders were sintered at 900 °C/2h to obtain porous (&lt;80% density) pellets. Subsequently, ZnO or SnO2 pastes (∼10 μm grain size) were smeared on either side of the pellets and sintered at 1100 °C/15 h, which yielded dense (&gt;95% density) ceramics. X-ray structural investigations revealed the presence of ZnO or SnO2 traces in the bulk of the CCTO ceramics. Scanning electron microscopy and energy dispersive spectroscopic studies confirmed the diffusion and the segregation of these oxides at the grain boundaries. The dielectric and varistor properties of the ZnO or SnO2 diffused samples were found to be superior to that of pristine CCTO ceramics. For instance, the dielectric constant (ɛ′) of ZnO diffused ceramics exhibited a value as high as 2.4 × 104 (1 kHz, at room temperature) and a dielectric loss (D) of 0.059. Similarly, SnO2 diffused ceramics exhibited a dielectric constant of 2.7 × 104 (1 kHz, at room temperature) associated with a dielectric loss of 0.047. The figure of merit of varistor performance, i.e., nonlinear coefficient (α = 10.6), of the SnO2 diffused sample is significantly higher than that of ZnO diffused (α = 7.4) and pristine CCTO (α = 4.5) ceramics. The dielectric data obtained for both the pristine and ZnO or SnO2 diffused ceramics were rationalized by invoking Cole–Cole analysis. The thermal activation energy was estimated from the temperature-dependent dielectric data besides current (I)–voltage (V) characteristics. Equivalent circuit modeling of the Nyquist plots demonstrated that the inclusion of ZnO and SnO2 layers in CCTO ceramics remarkably improved the grain boundary resistance (Rgb) by 5-fold and 20-fold, respectively, which resulted in making CCTO a better dielectric. This methodology of fabricating ceramics via interfacial engineering could pave the way for obtaining superior CCTO ceramics associated with exotic functional properties.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0139359</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5095-1734</orcidid><orcidid>https://orcid.org/0000-0003-4177-4187</orcidid><orcidid>https://orcid.org/0000-0003-3674-0011</orcidid><orcidid>https://orcid.org/0000-0002-6284-3957</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2023-03, Vol.133 (9)
issn 0021-8979
1089-7550
language eng
recordid cdi_proquest_journals_2781373986
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Calcium
Ceramic powders
Ceramics
Circuits
Copper
Density
Dielectric loss
Equivalent circuits
Figure of merit
Grain boundaries
Grain size
Nyquist plots
Pastes
Pellets
Permittivity
Room temperature
Sintering (powder metallurgy)
Temperature dependence
Tin dioxide
Zinc oxide
title Superior dielectric and varistor properties of ZnO or SnO2 diffused calcium copper titanate ceramics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A22%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superior%20dielectric%20and%20varistor%20properties%20of%20ZnO%20or%20SnO2%20diffused%20calcium%20copper%20titanate%20ceramics&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Dhavala,%20Lokeswararao&rft.date=2023-03-07&rft.volume=133&rft.issue=9&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0139359&rft_dat=%3Cproquest_cross%3E2781373986%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2781373986&rft_id=info:pmid/&rfr_iscdi=true