Least Squares Model Averaging for Two Non-Nested Linear Models
This paper studies the least squares model averaging methods for two non-nested linear models. It is proved that the Mallows model averaging weight of the true model is root- n consistent. Then the authors develop a penalized Mallows criterion which ensures that the weight of the true model equals 1...
Gespeichert in:
Veröffentlicht in: | Journal of systems science and complexity 2023-02, Vol.36 (1), p.412-432 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 432 |
---|---|
container_issue | 1 |
container_start_page | 412 |
container_title | Journal of systems science and complexity |
container_volume | 36 |
creator | Gao, Yan Xie, Tianfa Zou, Guohua |
description | This paper studies the least squares model averaging methods for two non-nested linear models. It is proved that the Mallows model averaging weight of the true model is root-
n
consistent. Then the authors develop a penalized Mallows criterion which ensures that the weight of the true model equals 1 with probability tending to 1 and thus the averaging estimator is asymptotically normal. If neither candidate model is true, the penalized Mallows averaging estimator is asymptotically optimal. Simulation results show the selection consistency of the penalized Mallows method and the superiority of the model averaging approach compared with the model selection estimation. |
doi_str_mv | 10.1007/s11424-023-1172-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2781276333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781276333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-9f5eb6554772ab50f37b2f5580196388ba09d8018e302be94966b6620a824a493</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvAc3TyP7kIpWgV1nqwnkO2m11a6qZNWsVvb8oKnpzLzMB7b4YfQtcUbimAvsuUCiYIME4o1YyoEzSiUlqiQenTMgNYoigT5-gi5zUAVxbMCN1Xwec9ftsdfAoZv8QmbPDkMyTfrfoOtzHhxVfE89iTecj70OBq1QefBmW-RGet3-Rw9dvH6P3xYTF9ItXr7Hk6qciSKbMntpWhVlIKrZmvJbRc16yV0gC1ihtTe7BNWUzgwOpghVWqVoqBN0x4YfkY3Qy52xR3h_KIW8dD6stJx7ShTCteaozooFqmmHMKrdum1YdP346CO2JyAyZXMLkjJqeKhw2eXLR9F9Jf8v-mH8jIZ1I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781276333</pqid></control><display><type>article</type><title>Least Squares Model Averaging for Two Non-Nested Linear Models</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Gao, Yan ; Xie, Tianfa ; Zou, Guohua</creator><creatorcontrib>Gao, Yan ; Xie, Tianfa ; Zou, Guohua</creatorcontrib><description>This paper studies the least squares model averaging methods for two non-nested linear models. It is proved that the Mallows model averaging weight of the true model is root-
n
consistent. Then the authors develop a penalized Mallows criterion which ensures that the weight of the true model equals 1 with probability tending to 1 and thus the averaging estimator is asymptotically normal. If neither candidate model is true, the penalized Mallows averaging estimator is asymptotically optimal. Simulation results show the selection consistency of the penalized Mallows method and the superiority of the model averaging approach compared with the model selection estimation.</description><identifier>ISSN: 1009-6124</identifier><identifier>EISSN: 1559-7067</identifier><identifier>DOI: 10.1007/s11424-023-1172-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic properties ; Complex Systems ; Control ; Least squares ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Operations Research/Decision Theory ; Statistics ; Systems Theory</subject><ispartof>Journal of systems science and complexity, 2023-02, Vol.36 (1), p.412-432</ispartof><rights>The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2023</rights><rights>The Editorial Office of JSSC & Springer-Verlag GmbH Germany 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-9f5eb6554772ab50f37b2f5580196388ba09d8018e302be94966b6620a824a493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11424-023-1172-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11424-023-1172-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gao, Yan</creatorcontrib><creatorcontrib>Xie, Tianfa</creatorcontrib><creatorcontrib>Zou, Guohua</creatorcontrib><title>Least Squares Model Averaging for Two Non-Nested Linear Models</title><title>Journal of systems science and complexity</title><addtitle>J Syst Sci Complex</addtitle><description>This paper studies the least squares model averaging methods for two non-nested linear models. It is proved that the Mallows model averaging weight of the true model is root-
n
consistent. Then the authors develop a penalized Mallows criterion which ensures that the weight of the true model equals 1 with probability tending to 1 and thus the averaging estimator is asymptotically normal. If neither candidate model is true, the penalized Mallows averaging estimator is asymptotically optimal. Simulation results show the selection consistency of the penalized Mallows method and the superiority of the model averaging approach compared with the model selection estimation.</description><subject>Asymptotic properties</subject><subject>Complex Systems</subject><subject>Control</subject><subject>Least squares</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Operations Research/Decision Theory</subject><subject>Statistics</subject><subject>Systems Theory</subject><issn>1009-6124</issn><issn>1559-7067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvAc3TyP7kIpWgV1nqwnkO2m11a6qZNWsVvb8oKnpzLzMB7b4YfQtcUbimAvsuUCiYIME4o1YyoEzSiUlqiQenTMgNYoigT5-gi5zUAVxbMCN1Xwec9ftsdfAoZv8QmbPDkMyTfrfoOtzHhxVfE89iTecj70OBq1QefBmW-RGet3-Rw9dvH6P3xYTF9ItXr7Hk6qciSKbMntpWhVlIKrZmvJbRc16yV0gC1ihtTe7BNWUzgwOpghVWqVoqBN0x4YfkY3Qy52xR3h_KIW8dD6stJx7ShTCteaozooFqmmHMKrdum1YdP346CO2JyAyZXMLkjJqeKhw2eXLR9F9Jf8v-mH8jIZ1I</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Gao, Yan</creator><creator>Xie, Tianfa</creator><creator>Zou, Guohua</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230201</creationdate><title>Least Squares Model Averaging for Two Non-Nested Linear Models</title><author>Gao, Yan ; Xie, Tianfa ; Zou, Guohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-9f5eb6554772ab50f37b2f5580196388ba09d8018e302be94966b6620a824a493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic properties</topic><topic>Complex Systems</topic><topic>Control</topic><topic>Least squares</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Operations Research/Decision Theory</topic><topic>Statistics</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yan</creatorcontrib><creatorcontrib>Xie, Tianfa</creatorcontrib><creatorcontrib>Zou, Guohua</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of systems science and complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yan</au><au>Xie, Tianfa</au><au>Zou, Guohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Least Squares Model Averaging for Two Non-Nested Linear Models</atitle><jtitle>Journal of systems science and complexity</jtitle><stitle>J Syst Sci Complex</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>36</volume><issue>1</issue><spage>412</spage><epage>432</epage><pages>412-432</pages><issn>1009-6124</issn><eissn>1559-7067</eissn><abstract>This paper studies the least squares model averaging methods for two non-nested linear models. It is proved that the Mallows model averaging weight of the true model is root-
n
consistent. Then the authors develop a penalized Mallows criterion which ensures that the weight of the true model equals 1 with probability tending to 1 and thus the averaging estimator is asymptotically normal. If neither candidate model is true, the penalized Mallows averaging estimator is asymptotically optimal. Simulation results show the selection consistency of the penalized Mallows method and the superiority of the model averaging approach compared with the model selection estimation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11424-023-1172-6</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1009-6124 |
ispartof | Journal of systems science and complexity, 2023-02, Vol.36 (1), p.412-432 |
issn | 1009-6124 1559-7067 |
language | eng |
recordid | cdi_proquest_journals_2781276333 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Asymptotic properties Complex Systems Control Least squares Mathematics Mathematics and Statistics Mathematics of Computing Operations Research/Decision Theory Statistics Systems Theory |
title | Least Squares Model Averaging for Two Non-Nested Linear Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A17%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Least%20Squares%20Model%20Averaging%20for%20Two%20Non-Nested%20Linear%20Models&rft.jtitle=Journal%20of%20systems%20science%20and%20complexity&rft.au=Gao,%20Yan&rft.date=2023-02-01&rft.volume=36&rft.issue=1&rft.spage=412&rft.epage=432&rft.pages=412-432&rft.issn=1009-6124&rft.eissn=1559-7067&rft_id=info:doi/10.1007/s11424-023-1172-6&rft_dat=%3Cproquest_cross%3E2781276333%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2781276333&rft_id=info:pmid/&rfr_iscdi=true |