Least Squares Model Averaging for Two Non-Nested Linear Models

This paper studies the least squares model averaging methods for two non-nested linear models. It is proved that the Mallows model averaging weight of the true model is root- n consistent. Then the authors develop a penalized Mallows criterion which ensures that the weight of the true model equals 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems science and complexity 2023-02, Vol.36 (1), p.412-432
Hauptverfasser: Gao, Yan, Xie, Tianfa, Zou, Guohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 432
container_issue 1
container_start_page 412
container_title Journal of systems science and complexity
container_volume 36
creator Gao, Yan
Xie, Tianfa
Zou, Guohua
description This paper studies the least squares model averaging methods for two non-nested linear models. It is proved that the Mallows model averaging weight of the true model is root- n consistent. Then the authors develop a penalized Mallows criterion which ensures that the weight of the true model equals 1 with probability tending to 1 and thus the averaging estimator is asymptotically normal. If neither candidate model is true, the penalized Mallows averaging estimator is asymptotically optimal. Simulation results show the selection consistency of the penalized Mallows method and the superiority of the model averaging approach compared with the model selection estimation.
doi_str_mv 10.1007/s11424-023-1172-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2781276333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781276333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-9f5eb6554772ab50f37b2f5580196388ba09d8018e302be94966b6620a824a493</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvAc3TyP7kIpWgV1nqwnkO2m11a6qZNWsVvb8oKnpzLzMB7b4YfQtcUbimAvsuUCiYIME4o1YyoEzSiUlqiQenTMgNYoigT5-gi5zUAVxbMCN1Xwec9ftsdfAoZv8QmbPDkMyTfrfoOtzHhxVfE89iTecj70OBq1QefBmW-RGet3-Rw9dvH6P3xYTF9ItXr7Hk6qciSKbMntpWhVlIKrZmvJbRc16yV0gC1ihtTe7BNWUzgwOpghVWqVoqBN0x4YfkY3Qy52xR3h_KIW8dD6stJx7ShTCteaozooFqmmHMKrdum1YdP346CO2JyAyZXMLkjJqeKhw2eXLR9F9Jf8v-mH8jIZ1I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781276333</pqid></control><display><type>article</type><title>Least Squares Model Averaging for Two Non-Nested Linear Models</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Gao, Yan ; Xie, Tianfa ; Zou, Guohua</creator><creatorcontrib>Gao, Yan ; Xie, Tianfa ; Zou, Guohua</creatorcontrib><description>This paper studies the least squares model averaging methods for two non-nested linear models. It is proved that the Mallows model averaging weight of the true model is root- n consistent. Then the authors develop a penalized Mallows criterion which ensures that the weight of the true model equals 1 with probability tending to 1 and thus the averaging estimator is asymptotically normal. If neither candidate model is true, the penalized Mallows averaging estimator is asymptotically optimal. Simulation results show the selection consistency of the penalized Mallows method and the superiority of the model averaging approach compared with the model selection estimation.</description><identifier>ISSN: 1009-6124</identifier><identifier>EISSN: 1559-7067</identifier><identifier>DOI: 10.1007/s11424-023-1172-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Asymptotic properties ; Complex Systems ; Control ; Least squares ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Operations Research/Decision Theory ; Statistics ; Systems Theory</subject><ispartof>Journal of systems science and complexity, 2023-02, Vol.36 (1), p.412-432</ispartof><rights>The Editorial Office of JSSC &amp; Springer-Verlag GmbH Germany 2023</rights><rights>The Editorial Office of JSSC &amp; Springer-Verlag GmbH Germany 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-9f5eb6554772ab50f37b2f5580196388ba09d8018e302be94966b6620a824a493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11424-023-1172-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11424-023-1172-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gao, Yan</creatorcontrib><creatorcontrib>Xie, Tianfa</creatorcontrib><creatorcontrib>Zou, Guohua</creatorcontrib><title>Least Squares Model Averaging for Two Non-Nested Linear Models</title><title>Journal of systems science and complexity</title><addtitle>J Syst Sci Complex</addtitle><description>This paper studies the least squares model averaging methods for two non-nested linear models. It is proved that the Mallows model averaging weight of the true model is root- n consistent. Then the authors develop a penalized Mallows criterion which ensures that the weight of the true model equals 1 with probability tending to 1 and thus the averaging estimator is asymptotically normal. If neither candidate model is true, the penalized Mallows averaging estimator is asymptotically optimal. Simulation results show the selection consistency of the penalized Mallows method and the superiority of the model averaging approach compared with the model selection estimation.</description><subject>Asymptotic properties</subject><subject>Complex Systems</subject><subject>Control</subject><subject>Least squares</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Operations Research/Decision Theory</subject><subject>Statistics</subject><subject>Systems Theory</subject><issn>1009-6124</issn><issn>1559-7067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvAc3TyP7kIpWgV1nqwnkO2m11a6qZNWsVvb8oKnpzLzMB7b4YfQtcUbimAvsuUCiYIME4o1YyoEzSiUlqiQenTMgNYoigT5-gi5zUAVxbMCN1Xwec9ftsdfAoZv8QmbPDkMyTfrfoOtzHhxVfE89iTecj70OBq1QefBmW-RGet3-Rw9dvH6P3xYTF9ItXr7Hk6qciSKbMntpWhVlIKrZmvJbRc16yV0gC1ihtTe7BNWUzgwOpghVWqVoqBN0x4YfkY3Qy52xR3h_KIW8dD6stJx7ShTCteaozooFqmmHMKrdum1YdP346CO2JyAyZXMLkjJqeKhw2eXLR9F9Jf8v-mH8jIZ1I</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Gao, Yan</creator><creator>Xie, Tianfa</creator><creator>Zou, Guohua</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230201</creationdate><title>Least Squares Model Averaging for Two Non-Nested Linear Models</title><author>Gao, Yan ; Xie, Tianfa ; Zou, Guohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-9f5eb6554772ab50f37b2f5580196388ba09d8018e302be94966b6620a824a493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic properties</topic><topic>Complex Systems</topic><topic>Control</topic><topic>Least squares</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Operations Research/Decision Theory</topic><topic>Statistics</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yan</creatorcontrib><creatorcontrib>Xie, Tianfa</creatorcontrib><creatorcontrib>Zou, Guohua</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of systems science and complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yan</au><au>Xie, Tianfa</au><au>Zou, Guohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Least Squares Model Averaging for Two Non-Nested Linear Models</atitle><jtitle>Journal of systems science and complexity</jtitle><stitle>J Syst Sci Complex</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>36</volume><issue>1</issue><spage>412</spage><epage>432</epage><pages>412-432</pages><issn>1009-6124</issn><eissn>1559-7067</eissn><abstract>This paper studies the least squares model averaging methods for two non-nested linear models. It is proved that the Mallows model averaging weight of the true model is root- n consistent. Then the authors develop a penalized Mallows criterion which ensures that the weight of the true model equals 1 with probability tending to 1 and thus the averaging estimator is asymptotically normal. If neither candidate model is true, the penalized Mallows averaging estimator is asymptotically optimal. Simulation results show the selection consistency of the penalized Mallows method and the superiority of the model averaging approach compared with the model selection estimation.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11424-023-1172-6</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1009-6124
ispartof Journal of systems science and complexity, 2023-02, Vol.36 (1), p.412-432
issn 1009-6124
1559-7067
language eng
recordid cdi_proquest_journals_2781276333
source SpringerLink Journals; Alma/SFX Local Collection
subjects Asymptotic properties
Complex Systems
Control
Least squares
Mathematics
Mathematics and Statistics
Mathematics of Computing
Operations Research/Decision Theory
Statistics
Systems Theory
title Least Squares Model Averaging for Two Non-Nested Linear Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A17%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Least%20Squares%20Model%20Averaging%20for%20Two%20Non-Nested%20Linear%20Models&rft.jtitle=Journal%20of%20systems%20science%20and%20complexity&rft.au=Gao,%20Yan&rft.date=2023-02-01&rft.volume=36&rft.issue=1&rft.spage=412&rft.epage=432&rft.pages=412-432&rft.issn=1009-6124&rft.eissn=1559-7067&rft_id=info:doi/10.1007/s11424-023-1172-6&rft_dat=%3Cproquest_cross%3E2781276333%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2781276333&rft_id=info:pmid/&rfr_iscdi=true