Preparation of hydroxyapatite-based porous materials for absorption of lead ions

In this paper, soybean protein isolate (SPI) was used as template, hydroxyapatite was crystallized on protein chains of SPI by in-situ synthesis, then the obtained inorganic HA/biopolymer SPI composite (HA@SPI) was calcined at suitable temperature, which afforded a novel hydroxyapatite-based porous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2019-10, Vol.80 (7), p.1266-1275
Hauptverfasser: Wang, Zejun, Sun, Kangqi, He, Yufeng, Song, Pengfei, Zhang, Dawei, Wang, Rongmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, soybean protein isolate (SPI) was used as template, hydroxyapatite was crystallized on protein chains of SPI by in-situ synthesis, then the obtained inorganic HA/biopolymer SPI composite (HA@SPI) was calcined at suitable temperature, which afforded a novel hydroxyapatite-based porous materials (HApM). The results indicated that the product showed a porous morphology structure and excellent absorption performance for Pb . HApM maximum removal of lead was attained (96.25%) at an initial pH value of 7.4, temperature of 25 °C and contact time of 30 min with an initial metal concentration of 60 mg/L. In order to identify composition, structure and functional groups involved in the uptake of Pb , Fourier transform infrared spectrometer (FTIR), thermogravimetric analysis (TG), X-ray diffraction (XRD) scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) analysis were carried out. Therefore, the hydroxyapatite-based porous materials (HApM) is a promising candidate for the treatment of liquid wastes containing toxic Pb metal ion, heavy metal ion antidotes and other related fields.
ISSN:0273-1223
1996-9732
DOI:10.2166/wst.2019.370