Easy‐Cone Magnetic State Induced Ultrahigh Sensitivity and Low Driving Current in Spin‐Orbit Coupling 3D Magnetic Sensors

Measurement of 3D vector magnetic field is of vital importance for the development of magnetic navigation, biomedical diagnosis, and microimaging. Traditional 3D magnetic sensors require cooperation of multiple sensors on three orthogonal planes, resulting in disadvantages of bulky size and low spat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-03, Vol.33 (10), p.n/a
Hauptverfasser: Su, Wei, Hu, Zhongqiang, Li, Yaojin, Han, Yongliang, Chen, Yicheng, Wang, Chenying, Jiang, Zhuangde, He, Zhexi, Wu, Jingen, Zhou, Ziyao, Wang, Zhiguang, Liu, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title Advanced functional materials
container_volume 33
creator Su, Wei
Hu, Zhongqiang
Li, Yaojin
Han, Yongliang
Chen, Yicheng
Wang, Chenying
Jiang, Zhuangde
He, Zhexi
Wu, Jingen
Zhou, Ziyao
Wang, Zhiguang
Liu, Ming
description Measurement of 3D vector magnetic field is of vital importance for the development of magnetic navigation, biomedical diagnosis, and microimaging. Traditional 3D magnetic sensors require cooperation of multiple sensors on three orthogonal planes, resulting in disadvantages of bulky size and low spatial resolution. Recently proposed spin orbit torque sensor based on ferromagnetic/heavy‐metal heterostructures can detect three magnetic field components individually due to the different symmetries of current‐polarity‐dependent magnetization dynamic. However, the large driving current density and complex driving procedure hinder their practical application, especially in AC magnetic field detection. Herein, 3D magnetic sensors with dramatically reduced driving current density are reported, one fifth of the original value, by exquisite engineering of the magnetic anisotropy in Pt/Co/Ta heterostructures. With further reduced perpendicular magnetic anisotropy, the sensor in the easy‐cone state demonstrates a record‐high sensitivity of 31196 V A−1 T−1. More importantly, the easy‐cone state sensor can work with an ultralow driving current density of 3.8 kA cm−2, which is three orders lower than previous results. Although easy‐cone state sensor can only measure the z‐axis field, highly compact 3D magnetic sensor can be realized by adoption of two anisotropic magnetoresistance sensors, promising great potential application in space‐ and energy‐restricted scenarios. Highly sensitive anomalous hall effect (AHE) 3D magnetic sensor with low driving current density can be realized by exquisite engineering of the magnetic anisotropy in Pt/Co/Ta heterostructures. Record‐high sensitivity is obtained with sensors in the easy cone magnetic state and a highly compact planar 3D magnetic sensor with nT resolution is developed by combing AHE and magnetoresistance sensors.
doi_str_mv 10.1002/adfm.202211752
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2781106703</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781106703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3172-657dc55a8a837bd6646a4b39fc185ab7a7a438a9f44d4087a6018e2ee9a9c8e3</originalsourceid><addsrcrecordid>eNqFkM1Kw0AUhYMoWKtb1wOuU-cnyUyWJa1aaOmiFdyFm2TSTmkncWZiyULwEXxGn8SUSnXn6p4L3zkHjufdEjwgGNN7KMrdgGJKCeEhPfN6JCKRzzAV5ydNXi69K2s3GBPOWdDz3sdg26-Pz6TSEs1gpaVTOVo4cBJNdNHkskDPW2dgrVZrtJDaKqfelGsR6AJNqz0ame7XK5Q0xkjtkNJoUSvdZc5NphxKqqbeHgA2-lPQBVXGXnsXJWytvPm5fW_5MF4mT_50_jhJhlM_Z4RTPwp5kYchCBCMZ0UUBREEGYvLnIgQMg4cAiYgLoOgCLDgEGEiJJUyhjgXkvW9u2NsbarXRlqXbqrG6K4xpVwQgiOOWUcNjlRuKmuNLNPaqB2YNiU4PSycHhZOTwt3hvho2KutbP-h0-HoYfbr_QaccoJB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781106703</pqid></control><display><type>article</type><title>Easy‐Cone Magnetic State Induced Ultrahigh Sensitivity and Low Driving Current in Spin‐Orbit Coupling 3D Magnetic Sensors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Su, Wei ; Hu, Zhongqiang ; Li, Yaojin ; Han, Yongliang ; Chen, Yicheng ; Wang, Chenying ; Jiang, Zhuangde ; He, Zhexi ; Wu, Jingen ; Zhou, Ziyao ; Wang, Zhiguang ; Liu, Ming</creator><creatorcontrib>Su, Wei ; Hu, Zhongqiang ; Li, Yaojin ; Han, Yongliang ; Chen, Yicheng ; Wang, Chenying ; Jiang, Zhuangde ; He, Zhexi ; Wu, Jingen ; Zhou, Ziyao ; Wang, Zhiguang ; Liu, Ming</creatorcontrib><description>Measurement of 3D vector magnetic field is of vital importance for the development of magnetic navigation, biomedical diagnosis, and microimaging. Traditional 3D magnetic sensors require cooperation of multiple sensors on three orthogonal planes, resulting in disadvantages of bulky size and low spatial resolution. Recently proposed spin orbit torque sensor based on ferromagnetic/heavy‐metal heterostructures can detect three magnetic field components individually due to the different symmetries of current‐polarity‐dependent magnetization dynamic. However, the large driving current density and complex driving procedure hinder their practical application, especially in AC magnetic field detection. Herein, 3D magnetic sensors with dramatically reduced driving current density are reported, one fifth of the original value, by exquisite engineering of the magnetic anisotropy in Pt/Co/Ta heterostructures. With further reduced perpendicular magnetic anisotropy, the sensor in the easy‐cone state demonstrates a record‐high sensitivity of 31196 V A−1 T−1. More importantly, the easy‐cone state sensor can work with an ultralow driving current density of 3.8 kA cm−2, which is three orders lower than previous results. Although easy‐cone state sensor can only measure the z‐axis field, highly compact 3D magnetic sensor can be realized by adoption of two anisotropic magnetoresistance sensors, promising great potential application in space‐ and energy‐restricted scenarios. Highly sensitive anomalous hall effect (AHE) 3D magnetic sensor with low driving current density can be realized by exquisite engineering of the magnetic anisotropy in Pt/Co/Ta heterostructures. Record‐high sensitivity is obtained with sensors in the easy cone magnetic state and a highly compact planar 3D magnetic sensor with nT resolution is developed by combing AHE and magnetoresistance sensors.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202211752</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Current density ; easy cone state ; Ferromagnetism ; Heterostructures ; Magnetic anisotropy ; Magnetic fields ; magnetic sensors ; Magnetoresistance ; Magnetoresistivity ; Materials science ; Orthogonality ; Sensitivity ; Sensors ; Spatial resolution ; spin orbit torques ; Tantalum ; Torquemeters</subject><ispartof>Advanced functional materials, 2023-03, Vol.33 (10), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3172-657dc55a8a837bd6646a4b39fc185ab7a7a438a9f44d4087a6018e2ee9a9c8e3</citedby><cites>FETCH-LOGICAL-c3172-657dc55a8a837bd6646a4b39fc185ab7a7a438a9f44d4087a6018e2ee9a9c8e3</cites><orcidid>0000-0001-7045-5308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202211752$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202211752$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Su, Wei</creatorcontrib><creatorcontrib>Hu, Zhongqiang</creatorcontrib><creatorcontrib>Li, Yaojin</creatorcontrib><creatorcontrib>Han, Yongliang</creatorcontrib><creatorcontrib>Chen, Yicheng</creatorcontrib><creatorcontrib>Wang, Chenying</creatorcontrib><creatorcontrib>Jiang, Zhuangde</creatorcontrib><creatorcontrib>He, Zhexi</creatorcontrib><creatorcontrib>Wu, Jingen</creatorcontrib><creatorcontrib>Zhou, Ziyao</creatorcontrib><creatorcontrib>Wang, Zhiguang</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><title>Easy‐Cone Magnetic State Induced Ultrahigh Sensitivity and Low Driving Current in Spin‐Orbit Coupling 3D Magnetic Sensors</title><title>Advanced functional materials</title><description>Measurement of 3D vector magnetic field is of vital importance for the development of magnetic navigation, biomedical diagnosis, and microimaging. Traditional 3D magnetic sensors require cooperation of multiple sensors on three orthogonal planes, resulting in disadvantages of bulky size and low spatial resolution. Recently proposed spin orbit torque sensor based on ferromagnetic/heavy‐metal heterostructures can detect three magnetic field components individually due to the different symmetries of current‐polarity‐dependent magnetization dynamic. However, the large driving current density and complex driving procedure hinder their practical application, especially in AC magnetic field detection. Herein, 3D magnetic sensors with dramatically reduced driving current density are reported, one fifth of the original value, by exquisite engineering of the magnetic anisotropy in Pt/Co/Ta heterostructures. With further reduced perpendicular magnetic anisotropy, the sensor in the easy‐cone state demonstrates a record‐high sensitivity of 31196 V A−1 T−1. More importantly, the easy‐cone state sensor can work with an ultralow driving current density of 3.8 kA cm−2, which is three orders lower than previous results. Although easy‐cone state sensor can only measure the z‐axis field, highly compact 3D magnetic sensor can be realized by adoption of two anisotropic magnetoresistance sensors, promising great potential application in space‐ and energy‐restricted scenarios. Highly sensitive anomalous hall effect (AHE) 3D magnetic sensor with low driving current density can be realized by exquisite engineering of the magnetic anisotropy in Pt/Co/Ta heterostructures. Record‐high sensitivity is obtained with sensors in the easy cone magnetic state and a highly compact planar 3D magnetic sensor with nT resolution is developed by combing AHE and magnetoresistance sensors.</description><subject>Current density</subject><subject>easy cone state</subject><subject>Ferromagnetism</subject><subject>Heterostructures</subject><subject>Magnetic anisotropy</subject><subject>Magnetic fields</subject><subject>magnetic sensors</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Materials science</subject><subject>Orthogonality</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Spatial resolution</subject><subject>spin orbit torques</subject><subject>Tantalum</subject><subject>Torquemeters</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Kw0AUhYMoWKtb1wOuU-cnyUyWJa1aaOmiFdyFm2TSTmkncWZiyULwEXxGn8SUSnXn6p4L3zkHjufdEjwgGNN7KMrdgGJKCeEhPfN6JCKRzzAV5ydNXi69K2s3GBPOWdDz3sdg26-Pz6TSEs1gpaVTOVo4cBJNdNHkskDPW2dgrVZrtJDaKqfelGsR6AJNqz0ame7XK5Q0xkjtkNJoUSvdZc5NphxKqqbeHgA2-lPQBVXGXnsXJWytvPm5fW_5MF4mT_50_jhJhlM_Z4RTPwp5kYchCBCMZ0UUBREEGYvLnIgQMg4cAiYgLoOgCLDgEGEiJJUyhjgXkvW9u2NsbarXRlqXbqrG6K4xpVwQgiOOWUcNjlRuKmuNLNPaqB2YNiU4PSycHhZOTwt3hvho2KutbP-h0-HoYfbr_QaccoJB</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Su, Wei</creator><creator>Hu, Zhongqiang</creator><creator>Li, Yaojin</creator><creator>Han, Yongliang</creator><creator>Chen, Yicheng</creator><creator>Wang, Chenying</creator><creator>Jiang, Zhuangde</creator><creator>He, Zhexi</creator><creator>Wu, Jingen</creator><creator>Zhou, Ziyao</creator><creator>Wang, Zhiguang</creator><creator>Liu, Ming</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7045-5308</orcidid></search><sort><creationdate>20230301</creationdate><title>Easy‐Cone Magnetic State Induced Ultrahigh Sensitivity and Low Driving Current in Spin‐Orbit Coupling 3D Magnetic Sensors</title><author>Su, Wei ; Hu, Zhongqiang ; Li, Yaojin ; Han, Yongliang ; Chen, Yicheng ; Wang, Chenying ; Jiang, Zhuangde ; He, Zhexi ; Wu, Jingen ; Zhou, Ziyao ; Wang, Zhiguang ; Liu, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3172-657dc55a8a837bd6646a4b39fc185ab7a7a438a9f44d4087a6018e2ee9a9c8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Current density</topic><topic>easy cone state</topic><topic>Ferromagnetism</topic><topic>Heterostructures</topic><topic>Magnetic anisotropy</topic><topic>Magnetic fields</topic><topic>magnetic sensors</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Materials science</topic><topic>Orthogonality</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Spatial resolution</topic><topic>spin orbit torques</topic><topic>Tantalum</topic><topic>Torquemeters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Wei</creatorcontrib><creatorcontrib>Hu, Zhongqiang</creatorcontrib><creatorcontrib>Li, Yaojin</creatorcontrib><creatorcontrib>Han, Yongliang</creatorcontrib><creatorcontrib>Chen, Yicheng</creatorcontrib><creatorcontrib>Wang, Chenying</creatorcontrib><creatorcontrib>Jiang, Zhuangde</creatorcontrib><creatorcontrib>He, Zhexi</creatorcontrib><creatorcontrib>Wu, Jingen</creatorcontrib><creatorcontrib>Zhou, Ziyao</creatorcontrib><creatorcontrib>Wang, Zhiguang</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Wei</au><au>Hu, Zhongqiang</au><au>Li, Yaojin</au><au>Han, Yongliang</au><au>Chen, Yicheng</au><au>Wang, Chenying</au><au>Jiang, Zhuangde</au><au>He, Zhexi</au><au>Wu, Jingen</au><au>Zhou, Ziyao</au><au>Wang, Zhiguang</au><au>Liu, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Easy‐Cone Magnetic State Induced Ultrahigh Sensitivity and Low Driving Current in Spin‐Orbit Coupling 3D Magnetic Sensors</atitle><jtitle>Advanced functional materials</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>33</volume><issue>10</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Measurement of 3D vector magnetic field is of vital importance for the development of magnetic navigation, biomedical diagnosis, and microimaging. Traditional 3D magnetic sensors require cooperation of multiple sensors on three orthogonal planes, resulting in disadvantages of bulky size and low spatial resolution. Recently proposed spin orbit torque sensor based on ferromagnetic/heavy‐metal heterostructures can detect three magnetic field components individually due to the different symmetries of current‐polarity‐dependent magnetization dynamic. However, the large driving current density and complex driving procedure hinder their practical application, especially in AC magnetic field detection. Herein, 3D magnetic sensors with dramatically reduced driving current density are reported, one fifth of the original value, by exquisite engineering of the magnetic anisotropy in Pt/Co/Ta heterostructures. With further reduced perpendicular magnetic anisotropy, the sensor in the easy‐cone state demonstrates a record‐high sensitivity of 31196 V A−1 T−1. More importantly, the easy‐cone state sensor can work with an ultralow driving current density of 3.8 kA cm−2, which is three orders lower than previous results. Although easy‐cone state sensor can only measure the z‐axis field, highly compact 3D magnetic sensor can be realized by adoption of two anisotropic magnetoresistance sensors, promising great potential application in space‐ and energy‐restricted scenarios. Highly sensitive anomalous hall effect (AHE) 3D magnetic sensor with low driving current density can be realized by exquisite engineering of the magnetic anisotropy in Pt/Co/Ta heterostructures. Record‐high sensitivity is obtained with sensors in the easy cone magnetic state and a highly compact planar 3D magnetic sensor with nT resolution is developed by combing AHE and magnetoresistance sensors.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202211752</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7045-5308</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-03, Vol.33 (10), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2781106703
source Wiley Online Library Journals Frontfile Complete
subjects Current density
easy cone state
Ferromagnetism
Heterostructures
Magnetic anisotropy
Magnetic fields
magnetic sensors
Magnetoresistance
Magnetoresistivity
Materials science
Orthogonality
Sensitivity
Sensors
Spatial resolution
spin orbit torques
Tantalum
Torquemeters
title Easy‐Cone Magnetic State Induced Ultrahigh Sensitivity and Low Driving Current in Spin‐Orbit Coupling 3D Magnetic Sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A03%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Easy%E2%80%90Cone%20Magnetic%20State%20Induced%20Ultrahigh%20Sensitivity%20and%20Low%20Driving%20Current%20in%20Spin%E2%80%90Orbit%20Coupling%203D%20Magnetic%20Sensors&rft.jtitle=Advanced%20functional%20materials&rft.au=Su,%20Wei&rft.date=2023-03-01&rft.volume=33&rft.issue=10&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202211752&rft_dat=%3Cproquest_cross%3E2781106703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2781106703&rft_id=info:pmid/&rfr_iscdi=true