Multimorphic Materials: Spatially Tailoring Mechanical Properties via Selective Initiation of Interpenetrating Polymer Networks

Access to multimaterial polymers with spatially localized properties and robust interfaces is anticipated to enable new capabilities in soft robotics, such as smooth actuation for advanced medical and manufacturing technologies. Here, orthogonal initiation is used to create interpenetrating polymer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-03, Vol.35 (9), p.e2210208-n/a
Hauptverfasser: Allen, Marshall J., Lien, Hsu‐Ming, Prine, Nathaniel, Burns, Carter, Rylski, Adrian K., Gu, Xiaodan, Cox, Lewis M., Mangolini, Filippo, Freeman, Benny D., Page, Zachariah A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page e2210208
container_title Advanced materials (Weinheim)
container_volume 35
creator Allen, Marshall J.
Lien, Hsu‐Ming
Prine, Nathaniel
Burns, Carter
Rylski, Adrian K.
Gu, Xiaodan
Cox, Lewis M.
Mangolini, Filippo
Freeman, Benny D.
Page, Zachariah A.
description Access to multimaterial polymers with spatially localized properties and robust interfaces is anticipated to enable new capabilities in soft robotics, such as smooth actuation for advanced medical and manufacturing technologies. Here, orthogonal initiation is used to create interpenetrating polymer networks (IPNs) with spatial control over morphology and mechanical properties. Base catalyzes the formation of a stiff and strong polyurethane, while blue LEDs initiate the formation of a soft and elastic polyacrylate. IPN morphology is controlled by when the LED is turned “on”, with large phase separation occurring for short time delays (≈1–2 min) and a mixed morphology for longer time delays (>5 min), which is supported by dynamic mechanical analysis, small angle X‐ray scattering, and atomic force microscopy. Through tailoring morphology, tensile moduli and fracture toughness can be tuned across ≈1–2 orders of magnitude. Moreover, a simple spring model is used to explain the observed mechanical behavior. Photopatterning produces “multimorphic” materials, where morphology is spatially localized with fine precision (
doi_str_mv 10.1002/adma.202210208
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2781104747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781104747</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4138-6a80011b36170d7cd186b40f3661cb242b386b28d05d22cefdc288a351c63ffe3</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhq2qVVlorz0iS5yzzNiJ4_S2oi0gsS0S9Bw5zgRMkzg4XtCe-tcxWqDHnuZDzzwjvYx9QVgigDg27WCWAoRAEKDfsQUWArMcquI9W0Ali6xSud5j-_N8BwCVAvWR7UlVYIGiXLC_600f3eDDdOssX5tIwZl-_sqvJhNT12_5tXG9D2684Wuyt2Z01vT8MviJQnQ08wdn-BX1ZKN7IH4-unQXnR-579KUhBONFEPaJcWl77cDBf6T4qMPf-ZP7EOX_tHnl3rAfv_4fn1yll38Oj0_WV1kNkepM2U0AGIjFZbQlrZFrZocOqkU2kbkopFpIXQLRSuEpa61QmsjC7RKdh3JA3a0807B329ojvWd34QxvaxFqREhL_MyUcsdZYOf50BdPQU3mLCtEernvOvnvOu3vNPB4Yt20wzUvuGvASeg2gGPrqftf3T16tt69U_-BO1Sjnk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781104747</pqid></control><display><type>article</type><title>Multimorphic Materials: Spatially Tailoring Mechanical Properties via Selective Initiation of Interpenetrating Polymer Networks</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Allen, Marshall J. ; Lien, Hsu‐Ming ; Prine, Nathaniel ; Burns, Carter ; Rylski, Adrian K. ; Gu, Xiaodan ; Cox, Lewis M. ; Mangolini, Filippo ; Freeman, Benny D. ; Page, Zachariah A.</creator><creatorcontrib>Allen, Marshall J. ; Lien, Hsu‐Ming ; Prine, Nathaniel ; Burns, Carter ; Rylski, Adrian K. ; Gu, Xiaodan ; Cox, Lewis M. ; Mangolini, Filippo ; Freeman, Benny D. ; Page, Zachariah A.</creatorcontrib><description>Access to multimaterial polymers with spatially localized properties and robust interfaces is anticipated to enable new capabilities in soft robotics, such as smooth actuation for advanced medical and manufacturing technologies. Here, orthogonal initiation is used to create interpenetrating polymer networks (IPNs) with spatial control over morphology and mechanical properties. Base catalyzes the formation of a stiff and strong polyurethane, while blue LEDs initiate the formation of a soft and elastic polyacrylate. IPN morphology is controlled by when the LED is turned “on”, with large phase separation occurring for short time delays (≈1–2 min) and a mixed morphology for longer time delays (&gt;5 min), which is supported by dynamic mechanical analysis, small angle X‐ray scattering, and atomic force microscopy. Through tailoring morphology, tensile moduli and fracture toughness can be tuned across ≈1–2 orders of magnitude. Moreover, a simple spring model is used to explain the observed mechanical behavior. Photopatterning produces “multimorphic” materials, where morphology is spatially localized with fine precision (&lt;100 µm), while maintaining a uniform chemical composition throughout to mitigate interfacial failure. As a final demonstration, the fabrication of hinges represents a possible use case for multimorphic materials in soft robotics. Two disparate polymer networks are created simultaneously using non‐interacting chemical reactions and light as a stimulus. Upon turning the light on, the polymers want to phase‐separate like oil and water, but the process is hindered as they interlock. Thus, the degree and location of phase separation, and in‐turn mechanical properties, can be precisely controlled by the “flick of a switch”.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202210208</identifier><identifier>PMID: 36515127</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acrylic resins ; Actuation ; Automation ; Chemical composition ; Dynamic mechanical analysis ; Fracture toughness ; Interpenetrating networks ; Manufacturing engineering ; Materials science ; Mechanical properties ; Morphology ; multimorphic ; Phase separation ; photopatterning ; photopolymerizations ; Polymers ; Polyurethane resins ; Robotics ; Soft robotics</subject><ispartof>Advanced materials (Weinheim), 2023-03, Vol.35 (9), p.e2210208-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4138-6a80011b36170d7cd186b40f3661cb242b386b28d05d22cefdc288a351c63ffe3</citedby><cites>FETCH-LOGICAL-c4138-6a80011b36170d7cd186b40f3661cb242b386b28d05d22cefdc288a351c63ffe3</cites><orcidid>0000-0001-5230-7432 ; 0000-0002-1013-5422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202210208$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202210208$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36515127$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Allen, Marshall J.</creatorcontrib><creatorcontrib>Lien, Hsu‐Ming</creatorcontrib><creatorcontrib>Prine, Nathaniel</creatorcontrib><creatorcontrib>Burns, Carter</creatorcontrib><creatorcontrib>Rylski, Adrian K.</creatorcontrib><creatorcontrib>Gu, Xiaodan</creatorcontrib><creatorcontrib>Cox, Lewis M.</creatorcontrib><creatorcontrib>Mangolini, Filippo</creatorcontrib><creatorcontrib>Freeman, Benny D.</creatorcontrib><creatorcontrib>Page, Zachariah A.</creatorcontrib><title>Multimorphic Materials: Spatially Tailoring Mechanical Properties via Selective Initiation of Interpenetrating Polymer Networks</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Access to multimaterial polymers with spatially localized properties and robust interfaces is anticipated to enable new capabilities in soft robotics, such as smooth actuation for advanced medical and manufacturing technologies. Here, orthogonal initiation is used to create interpenetrating polymer networks (IPNs) with spatial control over morphology and mechanical properties. Base catalyzes the formation of a stiff and strong polyurethane, while blue LEDs initiate the formation of a soft and elastic polyacrylate. IPN morphology is controlled by when the LED is turned “on”, with large phase separation occurring for short time delays (≈1–2 min) and a mixed morphology for longer time delays (&gt;5 min), which is supported by dynamic mechanical analysis, small angle X‐ray scattering, and atomic force microscopy. Through tailoring morphology, tensile moduli and fracture toughness can be tuned across ≈1–2 orders of magnitude. Moreover, a simple spring model is used to explain the observed mechanical behavior. Photopatterning produces “multimorphic” materials, where morphology is spatially localized with fine precision (&lt;100 µm), while maintaining a uniform chemical composition throughout to mitigate interfacial failure. As a final demonstration, the fabrication of hinges represents a possible use case for multimorphic materials in soft robotics. Two disparate polymer networks are created simultaneously using non‐interacting chemical reactions and light as a stimulus. Upon turning the light on, the polymers want to phase‐separate like oil and water, but the process is hindered as they interlock. Thus, the degree and location of phase separation, and in‐turn mechanical properties, can be precisely controlled by the “flick of a switch”.</description><subject>Acrylic resins</subject><subject>Actuation</subject><subject>Automation</subject><subject>Chemical composition</subject><subject>Dynamic mechanical analysis</subject><subject>Fracture toughness</subject><subject>Interpenetrating networks</subject><subject>Manufacturing engineering</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Morphology</subject><subject>multimorphic</subject><subject>Phase separation</subject><subject>photopatterning</subject><subject>photopolymerizations</subject><subject>Polymers</subject><subject>Polyurethane resins</subject><subject>Robotics</subject><subject>Soft robotics</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P3DAQhq2qVVlorz0iS5yzzNiJ4_S2oi0gsS0S9Bw5zgRMkzg4XtCe-tcxWqDHnuZDzzwjvYx9QVgigDg27WCWAoRAEKDfsQUWArMcquI9W0Ali6xSud5j-_N8BwCVAvWR7UlVYIGiXLC_600f3eDDdOssX5tIwZl-_sqvJhNT12_5tXG9D2684Wuyt2Z01vT8MviJQnQ08wdn-BX1ZKN7IH4-unQXnR-579KUhBONFEPaJcWl77cDBf6T4qMPf-ZP7EOX_tHnl3rAfv_4fn1yll38Oj0_WV1kNkepM2U0AGIjFZbQlrZFrZocOqkU2kbkopFpIXQLRSuEpa61QmsjC7RKdh3JA3a0807B329ojvWd34QxvaxFqREhL_MyUcsdZYOf50BdPQU3mLCtEernvOvnvOu3vNPB4Yt20wzUvuGvASeg2gGPrqftf3T16tt69U_-BO1Sjnk</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Allen, Marshall J.</creator><creator>Lien, Hsu‐Ming</creator><creator>Prine, Nathaniel</creator><creator>Burns, Carter</creator><creator>Rylski, Adrian K.</creator><creator>Gu, Xiaodan</creator><creator>Cox, Lewis M.</creator><creator>Mangolini, Filippo</creator><creator>Freeman, Benny D.</creator><creator>Page, Zachariah A.</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-5230-7432</orcidid><orcidid>https://orcid.org/0000-0002-1013-5422</orcidid></search><sort><creationdate>20230301</creationdate><title>Multimorphic Materials: Spatially Tailoring Mechanical Properties via Selective Initiation of Interpenetrating Polymer Networks</title><author>Allen, Marshall J. ; Lien, Hsu‐Ming ; Prine, Nathaniel ; Burns, Carter ; Rylski, Adrian K. ; Gu, Xiaodan ; Cox, Lewis M. ; Mangolini, Filippo ; Freeman, Benny D. ; Page, Zachariah A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4138-6a80011b36170d7cd186b40f3661cb242b386b28d05d22cefdc288a351c63ffe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acrylic resins</topic><topic>Actuation</topic><topic>Automation</topic><topic>Chemical composition</topic><topic>Dynamic mechanical analysis</topic><topic>Fracture toughness</topic><topic>Interpenetrating networks</topic><topic>Manufacturing engineering</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Morphology</topic><topic>multimorphic</topic><topic>Phase separation</topic><topic>photopatterning</topic><topic>photopolymerizations</topic><topic>Polymers</topic><topic>Polyurethane resins</topic><topic>Robotics</topic><topic>Soft robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Allen, Marshall J.</creatorcontrib><creatorcontrib>Lien, Hsu‐Ming</creatorcontrib><creatorcontrib>Prine, Nathaniel</creatorcontrib><creatorcontrib>Burns, Carter</creatorcontrib><creatorcontrib>Rylski, Adrian K.</creatorcontrib><creatorcontrib>Gu, Xiaodan</creatorcontrib><creatorcontrib>Cox, Lewis M.</creatorcontrib><creatorcontrib>Mangolini, Filippo</creatorcontrib><creatorcontrib>Freeman, Benny D.</creatorcontrib><creatorcontrib>Page, Zachariah A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Allen, Marshall J.</au><au>Lien, Hsu‐Ming</au><au>Prine, Nathaniel</au><au>Burns, Carter</au><au>Rylski, Adrian K.</au><au>Gu, Xiaodan</au><au>Cox, Lewis M.</au><au>Mangolini, Filippo</au><au>Freeman, Benny D.</au><au>Page, Zachariah A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimorphic Materials: Spatially Tailoring Mechanical Properties via Selective Initiation of Interpenetrating Polymer Networks</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>35</volume><issue>9</issue><spage>e2210208</spage><epage>n/a</epage><pages>e2210208-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Access to multimaterial polymers with spatially localized properties and robust interfaces is anticipated to enable new capabilities in soft robotics, such as smooth actuation for advanced medical and manufacturing technologies. Here, orthogonal initiation is used to create interpenetrating polymer networks (IPNs) with spatial control over morphology and mechanical properties. Base catalyzes the formation of a stiff and strong polyurethane, while blue LEDs initiate the formation of a soft and elastic polyacrylate. IPN morphology is controlled by when the LED is turned “on”, with large phase separation occurring for short time delays (≈1–2 min) and a mixed morphology for longer time delays (&gt;5 min), which is supported by dynamic mechanical analysis, small angle X‐ray scattering, and atomic force microscopy. Through tailoring morphology, tensile moduli and fracture toughness can be tuned across ≈1–2 orders of magnitude. Moreover, a simple spring model is used to explain the observed mechanical behavior. Photopatterning produces “multimorphic” materials, where morphology is spatially localized with fine precision (&lt;100 µm), while maintaining a uniform chemical composition throughout to mitigate interfacial failure. As a final demonstration, the fabrication of hinges represents a possible use case for multimorphic materials in soft robotics. Two disparate polymer networks are created simultaneously using non‐interacting chemical reactions and light as a stimulus. Upon turning the light on, the polymers want to phase‐separate like oil and water, but the process is hindered as they interlock. Thus, the degree and location of phase separation, and in‐turn mechanical properties, can be precisely controlled by the “flick of a switch”.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36515127</pmid><doi>10.1002/adma.202210208</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5230-7432</orcidid><orcidid>https://orcid.org/0000-0002-1013-5422</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-03, Vol.35 (9), p.e2210208-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_journals_2781104747
source Wiley Online Library Journals Frontfile Complete
subjects Acrylic resins
Actuation
Automation
Chemical composition
Dynamic mechanical analysis
Fracture toughness
Interpenetrating networks
Manufacturing engineering
Materials science
Mechanical properties
Morphology
multimorphic
Phase separation
photopatterning
photopolymerizations
Polymers
Polyurethane resins
Robotics
Soft robotics
title Multimorphic Materials: Spatially Tailoring Mechanical Properties via Selective Initiation of Interpenetrating Polymer Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A23%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimorphic%20Materials:%20Spatially%20Tailoring%20Mechanical%20Properties%20via%20Selective%20Initiation%20of%20Interpenetrating%20Polymer%20Networks&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Allen,%20Marshall%20J.&rft.date=2023-03-01&rft.volume=35&rft.issue=9&rft.spage=e2210208&rft.epage=n/a&rft.pages=e2210208-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202210208&rft_dat=%3Cproquest_cross%3E2781104747%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2781104747&rft_id=info:pmid/36515127&rfr_iscdi=true