High-precision cavity-enhanced spectroscopy for studying the H2–Ar collisions and interactions
Information about molecular collisions is encoded in the shapes of collision-perturbed molecular resonances. This connection between molecular interactions and line shapes is most clearly seen in simple systems, such as the molecular hydrogen perturbed by a noble gas atom. We study the H2–Ar system...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2023-03, Vol.158 (9), p.094303-094303 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 094303 |
---|---|
container_issue | 9 |
container_start_page | 094303 |
container_title | The Journal of chemical physics |
container_volume | 158 |
creator | Stolarczyk, N. Kowzan, G. Thibault, F. Cybulski, H. Słowiński, M. Tan, Y. Wang, J. Liu, A.-W. Hu, S.-M. Wcisło, P. |
description | Information about molecular collisions is encoded in the shapes of collision-perturbed molecular resonances. This connection between molecular interactions and line shapes is most clearly seen in simple systems, such as the molecular hydrogen perturbed by a noble gas atom. We study the H2–Ar system by means of highly accurate absorption spectroscopy and ab initio calculations. On the one hand, we use the cavity-ring-down-spectroscopy technique to record the shapes of the S(1) 3-0 line of molecular hydrogen perturbed by argon. On the other hand, we simulate the shapes of this line using ab initio quantum-scattering calculations performed on our accurate H2–Ar potential energy surface (PES). In order to validate the PES and the methodology of quantum-scattering calculations separately from the model of velocity-changing collisions, we measured the spectra in experimental conditions in which the influence of the latter is relatively minor. In these conditions, our theoretical collision-perturbed line shapes reproduce the raw experimental spectra at the percent level. However, the collisional shift, δ0, differs from the experimental value by 20%. Compared to other line-shape parameters, collisional shift displays much higher sensitivity to various technical aspects of the computational methodology. We identify the contributors to this large error and find the inaccuracies of the PES to be the dominant factor. With regard to the quantum scattering methodology, we demonstrate that treating the centrifugal distortion in a simple, approximate manner is sufficient to obtain the percent-level accuracy of collisional spectra. |
doi_str_mv | 10.1063/5.0139229 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2780996387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785200368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-7b94aeeef14a8d9a90b5416863b6c102625efe2730c77aa53e02adf9bf5c7f323</originalsourceid><addsrcrecordid>eNp90M1KxDAQB_AgCq4fB98g4EWF6iTZJs1RRF1B8KLnmk0nbqQ2NckKe_MdfEOfxK4rCgqeBobf_JkZQvYYHDOQ4qQ8BiY053qNjBhUulBSwzoZAXBWaAlyk2yl9AgATPHxiNxP_MOs6CNan3zoqDUvPi8K7Gams9jQ1KPNMSQb-gV1IdKU583Cdw80z5BO-Pvr22mkNrTt53yipmuo7zJGY_OysUM2nGkT7n7VbXJ3cX57Nimuby6vzk6vCysk5EJN9dggomNjUzXaaJiWYyYrKabSMuCSl-iQKwFWKWNKgcBN4_TUlVY5wcU2OVjl9jE8zzHl-skni21rOgzzVHNVlRxAyGqg-7_oY5jHbthuqUBrKSo1qMOVssP5KaKr--ifTFzUDOrlr-uy_vr1YI9WNlmfzfLub_wS4g-s-8b9h_8mfwD-Lo6K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780996387</pqid></control><display><type>article</type><title>High-precision cavity-enhanced spectroscopy for studying the H2–Ar collisions and interactions</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Stolarczyk, N. ; Kowzan, G. ; Thibault, F. ; Cybulski, H. ; Słowiński, M. ; Tan, Y. ; Wang, J. ; Liu, A.-W. ; Hu, S.-M. ; Wcisło, P.</creator><creatorcontrib>Stolarczyk, N. ; Kowzan, G. ; Thibault, F. ; Cybulski, H. ; Słowiński, M. ; Tan, Y. ; Wang, J. ; Liu, A.-W. ; Hu, S.-M. ; Wcisło, P.</creatorcontrib><description>Information about molecular collisions is encoded in the shapes of collision-perturbed molecular resonances. This connection between molecular interactions and line shapes is most clearly seen in simple systems, such as the molecular hydrogen perturbed by a noble gas atom. We study the H2–Ar system by means of highly accurate absorption spectroscopy and ab initio calculations. On the one hand, we use the cavity-ring-down-spectroscopy technique to record the shapes of the S(1) 3-0 line of molecular hydrogen perturbed by argon. On the other hand, we simulate the shapes of this line using ab initio quantum-scattering calculations performed on our accurate H2–Ar potential energy surface (PES). In order to validate the PES and the methodology of quantum-scattering calculations separately from the model of velocity-changing collisions, we measured the spectra in experimental conditions in which the influence of the latter is relatively minor. In these conditions, our theoretical collision-perturbed line shapes reproduce the raw experimental spectra at the percent level. However, the collisional shift, δ0, differs from the experimental value by 20%. Compared to other line-shape parameters, collisional shift displays much higher sensitivity to various technical aspects of the computational methodology. We identify the contributors to this large error and find the inaccuracies of the PES to be the dominant factor. With regard to the quantum scattering methodology, we demonstrate that treating the centrifugal distortion in a simple, approximate manner is sufficient to obtain the percent-level accuracy of collisional spectra.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0139229</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorption spectroscopy ; Argon ; Collisions ; Hydrogen ; Methodology ; Molecular collisions ; Molecular interactions ; Parameter sensitivity ; Physics ; Potential energy ; Rare gases ; Scattering ; Spectra ; Spectrum analysis</subject><ispartof>The Journal of chemical physics, 2023-03, Vol.158 (9), p.094303-094303</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-7b94aeeef14a8d9a90b5416863b6c102625efe2730c77aa53e02adf9bf5c7f323</citedby><cites>FETCH-LOGICAL-c360t-7b94aeeef14a8d9a90b5416863b6c102625efe2730c77aa53e02adf9bf5c7f323</cites><orcidid>0000-0001-7909-4473 ; 0000-0002-1565-8468 ; 0000-0001-6922-7199 ; 0000-0002-2996-5020 ; 0000-0002-1279-8588 ; 0000-0001-7484-6576 ; 0000-0001-9835-3530 ; 0000-0002-8196-9897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0139229$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Stolarczyk, N.</creatorcontrib><creatorcontrib>Kowzan, G.</creatorcontrib><creatorcontrib>Thibault, F.</creatorcontrib><creatorcontrib>Cybulski, H.</creatorcontrib><creatorcontrib>Słowiński, M.</creatorcontrib><creatorcontrib>Tan, Y.</creatorcontrib><creatorcontrib>Wang, J.</creatorcontrib><creatorcontrib>Liu, A.-W.</creatorcontrib><creatorcontrib>Hu, S.-M.</creatorcontrib><creatorcontrib>Wcisło, P.</creatorcontrib><title>High-precision cavity-enhanced spectroscopy for studying the H2–Ar collisions and interactions</title><title>The Journal of chemical physics</title><description>Information about molecular collisions is encoded in the shapes of collision-perturbed molecular resonances. This connection between molecular interactions and line shapes is most clearly seen in simple systems, such as the molecular hydrogen perturbed by a noble gas atom. We study the H2–Ar system by means of highly accurate absorption spectroscopy and ab initio calculations. On the one hand, we use the cavity-ring-down-spectroscopy technique to record the shapes of the S(1) 3-0 line of molecular hydrogen perturbed by argon. On the other hand, we simulate the shapes of this line using ab initio quantum-scattering calculations performed on our accurate H2–Ar potential energy surface (PES). In order to validate the PES and the methodology of quantum-scattering calculations separately from the model of velocity-changing collisions, we measured the spectra in experimental conditions in which the influence of the latter is relatively minor. In these conditions, our theoretical collision-perturbed line shapes reproduce the raw experimental spectra at the percent level. However, the collisional shift, δ0, differs from the experimental value by 20%. Compared to other line-shape parameters, collisional shift displays much higher sensitivity to various technical aspects of the computational methodology. We identify the contributors to this large error and find the inaccuracies of the PES to be the dominant factor. With regard to the quantum scattering methodology, we demonstrate that treating the centrifugal distortion in a simple, approximate manner is sufficient to obtain the percent-level accuracy of collisional spectra.</description><subject>Absorption spectroscopy</subject><subject>Argon</subject><subject>Collisions</subject><subject>Hydrogen</subject><subject>Methodology</subject><subject>Molecular collisions</subject><subject>Molecular interactions</subject><subject>Parameter sensitivity</subject><subject>Physics</subject><subject>Potential energy</subject><subject>Rare gases</subject><subject>Scattering</subject><subject>Spectra</subject><subject>Spectrum analysis</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90M1KxDAQB_AgCq4fB98g4EWF6iTZJs1RRF1B8KLnmk0nbqQ2NckKe_MdfEOfxK4rCgqeBobf_JkZQvYYHDOQ4qQ8BiY053qNjBhUulBSwzoZAXBWaAlyk2yl9AgATPHxiNxP_MOs6CNan3zoqDUvPi8K7Gams9jQ1KPNMSQb-gV1IdKU583Cdw80z5BO-Pvr22mkNrTt53yipmuo7zJGY_OysUM2nGkT7n7VbXJ3cX57Nimuby6vzk6vCysk5EJN9dggomNjUzXaaJiWYyYrKabSMuCSl-iQKwFWKWNKgcBN4_TUlVY5wcU2OVjl9jE8zzHl-skni21rOgzzVHNVlRxAyGqg-7_oY5jHbthuqUBrKSo1qMOVssP5KaKr--ifTFzUDOrlr-uy_vr1YI9WNlmfzfLub_wS4g-s-8b9h_8mfwD-Lo6K</recordid><startdate>20230307</startdate><enddate>20230307</enddate><creator>Stolarczyk, N.</creator><creator>Kowzan, G.</creator><creator>Thibault, F.</creator><creator>Cybulski, H.</creator><creator>Słowiński, M.</creator><creator>Tan, Y.</creator><creator>Wang, J.</creator><creator>Liu, A.-W.</creator><creator>Hu, S.-M.</creator><creator>Wcisło, P.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7909-4473</orcidid><orcidid>https://orcid.org/0000-0002-1565-8468</orcidid><orcidid>https://orcid.org/0000-0001-6922-7199</orcidid><orcidid>https://orcid.org/0000-0002-2996-5020</orcidid><orcidid>https://orcid.org/0000-0002-1279-8588</orcidid><orcidid>https://orcid.org/0000-0001-7484-6576</orcidid><orcidid>https://orcid.org/0000-0001-9835-3530</orcidid><orcidid>https://orcid.org/0000-0002-8196-9897</orcidid></search><sort><creationdate>20230307</creationdate><title>High-precision cavity-enhanced spectroscopy for studying the H2–Ar collisions and interactions</title><author>Stolarczyk, N. ; Kowzan, G. ; Thibault, F. ; Cybulski, H. ; Słowiński, M. ; Tan, Y. ; Wang, J. ; Liu, A.-W. ; Hu, S.-M. ; Wcisło, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-7b94aeeef14a8d9a90b5416863b6c102625efe2730c77aa53e02adf9bf5c7f323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption spectroscopy</topic><topic>Argon</topic><topic>Collisions</topic><topic>Hydrogen</topic><topic>Methodology</topic><topic>Molecular collisions</topic><topic>Molecular interactions</topic><topic>Parameter sensitivity</topic><topic>Physics</topic><topic>Potential energy</topic><topic>Rare gases</topic><topic>Scattering</topic><topic>Spectra</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stolarczyk, N.</creatorcontrib><creatorcontrib>Kowzan, G.</creatorcontrib><creatorcontrib>Thibault, F.</creatorcontrib><creatorcontrib>Cybulski, H.</creatorcontrib><creatorcontrib>Słowiński, M.</creatorcontrib><creatorcontrib>Tan, Y.</creatorcontrib><creatorcontrib>Wang, J.</creatorcontrib><creatorcontrib>Liu, A.-W.</creatorcontrib><creatorcontrib>Hu, S.-M.</creatorcontrib><creatorcontrib>Wcisło, P.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stolarczyk, N.</au><au>Kowzan, G.</au><au>Thibault, F.</au><au>Cybulski, H.</au><au>Słowiński, M.</au><au>Tan, Y.</au><au>Wang, J.</au><au>Liu, A.-W.</au><au>Hu, S.-M.</au><au>Wcisło, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-precision cavity-enhanced spectroscopy for studying the H2–Ar collisions and interactions</atitle><jtitle>The Journal of chemical physics</jtitle><date>2023-03-07</date><risdate>2023</risdate><volume>158</volume><issue>9</issue><spage>094303</spage><epage>094303</epage><pages>094303-094303</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Information about molecular collisions is encoded in the shapes of collision-perturbed molecular resonances. This connection between molecular interactions and line shapes is most clearly seen in simple systems, such as the molecular hydrogen perturbed by a noble gas atom. We study the H2–Ar system by means of highly accurate absorption spectroscopy and ab initio calculations. On the one hand, we use the cavity-ring-down-spectroscopy technique to record the shapes of the S(1) 3-0 line of molecular hydrogen perturbed by argon. On the other hand, we simulate the shapes of this line using ab initio quantum-scattering calculations performed on our accurate H2–Ar potential energy surface (PES). In order to validate the PES and the methodology of quantum-scattering calculations separately from the model of velocity-changing collisions, we measured the spectra in experimental conditions in which the influence of the latter is relatively minor. In these conditions, our theoretical collision-perturbed line shapes reproduce the raw experimental spectra at the percent level. However, the collisional shift, δ0, differs from the experimental value by 20%. Compared to other line-shape parameters, collisional shift displays much higher sensitivity to various technical aspects of the computational methodology. We identify the contributors to this large error and find the inaccuracies of the PES to be the dominant factor. With regard to the quantum scattering methodology, we demonstrate that treating the centrifugal distortion in a simple, approximate manner is sufficient to obtain the percent-level accuracy of collisional spectra.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0139229</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7909-4473</orcidid><orcidid>https://orcid.org/0000-0002-1565-8468</orcidid><orcidid>https://orcid.org/0000-0001-6922-7199</orcidid><orcidid>https://orcid.org/0000-0002-2996-5020</orcidid><orcidid>https://orcid.org/0000-0002-1279-8588</orcidid><orcidid>https://orcid.org/0000-0001-7484-6576</orcidid><orcidid>https://orcid.org/0000-0001-9835-3530</orcidid><orcidid>https://orcid.org/0000-0002-8196-9897</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2023-03, Vol.158 (9), p.094303-094303 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_journals_2780996387 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Absorption spectroscopy Argon Collisions Hydrogen Methodology Molecular collisions Molecular interactions Parameter sensitivity Physics Potential energy Rare gases Scattering Spectra Spectrum analysis |
title | High-precision cavity-enhanced spectroscopy for studying the H2–Ar collisions and interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-precision%20cavity-enhanced%20spectroscopy%20for%20studying%20the%20H2%E2%80%93Ar%20collisions%20and%20interactions&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Stolarczyk,%20N.&rft.date=2023-03-07&rft.volume=158&rft.issue=9&rft.spage=094303&rft.epage=094303&rft.pages=094303-094303&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0139229&rft_dat=%3Cproquest_cross%3E2785200368%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780996387&rft_id=info:pmid/&rfr_iscdi=true |