Delay-Variation-Dependent Criteria on Extended Dissipativity for Discrete-Time Neural Networks With Time-Varying Delay
This article is concerned with the extended dissipativity of discrete-time neural networks (NNs) with time-varying delay. First, the necessary and sufficient condition on matrix-valued polynomial inequalities reported recently is extended to a general case, where the variable of the polynomial does...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2023-03, Vol.34 (3), p.1578-1587 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1587 |
---|---|
container_issue | 3 |
container_start_page | 1578 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 34 |
creator | Zhang, Xian-Ming Han, Qing-Long Ge, Xiaohua Zhang, Bao-Lin |
description | This article is concerned with the extended dissipativity of discrete-time neural networks (NNs) with time-varying delay. First, the necessary and sufficient condition on matrix-valued polynomial inequalities reported recently is extended to a general case, where the variable of the polynomial does not need to start from zero. Second, a novel Lyapunov functional with a delay-dependent Lyapunov matrix is constructed by taking into consideration more information on nonlinear activation functions. By employing the Lyapunov functional method, a novel delay and its variation-dependent criterion are obtained to investigate the effects of the time-varying delay and its variation rate on several performances, such as H_\infty performance, passivity, and l_{2}-l_\infty performance, of a delayed discrete-time NN in a unified framework. Finally, a numerical example is given to show that the proposed criterion outperforms some existing ones. |
doi_str_mv | 10.1109/TNNLS.2021.3105591 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2780983344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9524366</ieee_id><sourcerecordid>2566029945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-d161fef94343e79647f69f04dc8b19ebd151d06996b3bbbab8a479d398c942ed3</originalsourceid><addsrcrecordid>eNpdkctu1DAUhi0EolXpC4BUWWLTTQbf4uQs0UwLSKNhwfSys5L4BNxmkqntFObtcTrDLPDmWP_5zsX-CXnP2YxzBp_Wq9Xyx0wwwWeSszwH_oqcCq5FJmRZvj7ei_sTch7CA0tHs1wreEtOpFIKJBSn5HmBXbXLbivvquiGPlvgFnuLfaRz7yImmQ49vfoTJ9XShQvBbRP67OKOtoOflMZjxGztNkhXOPqqSyH-HvxjoHcu_qJTZhqxc_1P-jLwHXnTVl3A80M8IzfXV-v512z5_cu3-edl1sicx8xyzVtsQUklsQCtilZDy5RtypoD1pbn3DINoGtZ13VVl5UqwEooG1ACrTwjl_u-Wz88jRii2aR1seuqHocxGJFrzQSAyhP68T_0YRh9n7YzoigZlDL9WqLEnmr8EILH1my926SnGc7MZIx5McZMxpiDMano4tB6rDdojyX_bEjAhz3gEPGYhlwoqbX8C6rnkpM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780983344</pqid></control><display><type>article</type><title>Delay-Variation-Dependent Criteria on Extended Dissipativity for Discrete-Time Neural Networks With Time-Varying Delay</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Xian-Ming ; Han, Qing-Long ; Ge, Xiaohua ; Zhang, Bao-Lin</creator><creatorcontrib>Zhang, Xian-Ming ; Han, Qing-Long ; Ge, Xiaohua ; Zhang, Bao-Lin</creatorcontrib><description><![CDATA[This article is concerned with the extended dissipativity of discrete-time neural networks (NNs) with time-varying delay. First, the necessary and sufficient condition on matrix-valued polynomial inequalities reported recently is extended to a general case, where the variable of the polynomial does not need to start from zero. Second, a novel Lyapunov functional with a delay-dependent Lyapunov matrix is constructed by taking into consideration more information on nonlinear activation functions. By employing the Lyapunov functional method, a novel delay and its variation-dependent criterion are obtained to investigate the effects of the time-varying delay and its variation rate on several performances, such as <inline-formula> <tex-math notation="LaTeX">H_\infty </tex-math></inline-formula> performance, passivity, and <inline-formula> <tex-math notation="LaTeX">l_{2}-l_\infty </tex-math></inline-formula> performance, of a delayed discrete-time NN in a unified framework. Finally, a numerical example is given to show that the proposed criterion outperforms some existing ones.]]></description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2021.3105591</identifier><identifier>PMID: 34449397</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial neural networks ; Criteria ; Delay ; Delays ; Discrete-time neural networks (NNs) ; Dissipation ; extended dissipativity ; Functionals ; Germanium ; Learning systems ; Linear matrix inequalities ; Lyapunov functional ; Mathematical analysis ; Neural networks ; Polynomials ; Symmetric matrices ; time-varying delay ; Upper bound ; Variation</subject><ispartof>IEEE transaction on neural networks and learning systems, 2023-03, Vol.34 (3), p.1578-1587</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-d161fef94343e79647f69f04dc8b19ebd151d06996b3bbbab8a479d398c942ed3</citedby><cites>FETCH-LOGICAL-c351t-d161fef94343e79647f69f04dc8b19ebd151d06996b3bbbab8a479d398c942ed3</cites><orcidid>0000-0003-0180-0897 ; 0000-0002-0129-5010 ; 0000-0002-7207-0716 ; 0000-0003-0691-5386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9524366$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9524366$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34449397$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xian-Ming</creatorcontrib><creatorcontrib>Han, Qing-Long</creatorcontrib><creatorcontrib>Ge, Xiaohua</creatorcontrib><creatorcontrib>Zhang, Bao-Lin</creatorcontrib><title>Delay-Variation-Dependent Criteria on Extended Dissipativity for Discrete-Time Neural Networks With Time-Varying Delay</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description><![CDATA[This article is concerned with the extended dissipativity of discrete-time neural networks (NNs) with time-varying delay. First, the necessary and sufficient condition on matrix-valued polynomial inequalities reported recently is extended to a general case, where the variable of the polynomial does not need to start from zero. Second, a novel Lyapunov functional with a delay-dependent Lyapunov matrix is constructed by taking into consideration more information on nonlinear activation functions. By employing the Lyapunov functional method, a novel delay and its variation-dependent criterion are obtained to investigate the effects of the time-varying delay and its variation rate on several performances, such as <inline-formula> <tex-math notation="LaTeX">H_\infty </tex-math></inline-formula> performance, passivity, and <inline-formula> <tex-math notation="LaTeX">l_{2}-l_\infty </tex-math></inline-formula> performance, of a delayed discrete-time NN in a unified framework. Finally, a numerical example is given to show that the proposed criterion outperforms some existing ones.]]></description><subject>Artificial neural networks</subject><subject>Criteria</subject><subject>Delay</subject><subject>Delays</subject><subject>Discrete-time neural networks (NNs)</subject><subject>Dissipation</subject><subject>extended dissipativity</subject><subject>Functionals</subject><subject>Germanium</subject><subject>Learning systems</subject><subject>Linear matrix inequalities</subject><subject>Lyapunov functional</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Polynomials</subject><subject>Symmetric matrices</subject><subject>time-varying delay</subject><subject>Upper bound</subject><subject>Variation</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkctu1DAUhi0EolXpC4BUWWLTTQbf4uQs0UwLSKNhwfSys5L4BNxmkqntFObtcTrDLPDmWP_5zsX-CXnP2YxzBp_Wq9Xyx0wwwWeSszwH_oqcCq5FJmRZvj7ei_sTch7CA0tHs1wreEtOpFIKJBSn5HmBXbXLbivvquiGPlvgFnuLfaRz7yImmQ49vfoTJ9XShQvBbRP67OKOtoOflMZjxGztNkhXOPqqSyH-HvxjoHcu_qJTZhqxc_1P-jLwHXnTVl3A80M8IzfXV-v512z5_cu3-edl1sicx8xyzVtsQUklsQCtilZDy5RtypoD1pbn3DINoGtZ13VVl5UqwEooG1ACrTwjl_u-Wz88jRii2aR1seuqHocxGJFrzQSAyhP68T_0YRh9n7YzoigZlDL9WqLEnmr8EILH1my926SnGc7MZIx5McZMxpiDMano4tB6rDdojyX_bEjAhz3gEPGYhlwoqbX8C6rnkpM</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Zhang, Xian-Ming</creator><creator>Han, Qing-Long</creator><creator>Ge, Xiaohua</creator><creator>Zhang, Bao-Lin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0180-0897</orcidid><orcidid>https://orcid.org/0000-0002-0129-5010</orcidid><orcidid>https://orcid.org/0000-0002-7207-0716</orcidid><orcidid>https://orcid.org/0000-0003-0691-5386</orcidid></search><sort><creationdate>20230301</creationdate><title>Delay-Variation-Dependent Criteria on Extended Dissipativity for Discrete-Time Neural Networks With Time-Varying Delay</title><author>Zhang, Xian-Ming ; Han, Qing-Long ; Ge, Xiaohua ; Zhang, Bao-Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-d161fef94343e79647f69f04dc8b19ebd151d06996b3bbbab8a479d398c942ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Criteria</topic><topic>Delay</topic><topic>Delays</topic><topic>Discrete-time neural networks (NNs)</topic><topic>Dissipation</topic><topic>extended dissipativity</topic><topic>Functionals</topic><topic>Germanium</topic><topic>Learning systems</topic><topic>Linear matrix inequalities</topic><topic>Lyapunov functional</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Polynomials</topic><topic>Symmetric matrices</topic><topic>time-varying delay</topic><topic>Upper bound</topic><topic>Variation</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xian-Ming</creatorcontrib><creatorcontrib>Han, Qing-Long</creatorcontrib><creatorcontrib>Ge, Xiaohua</creatorcontrib><creatorcontrib>Zhang, Bao-Lin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Xian-Ming</au><au>Han, Qing-Long</au><au>Ge, Xiaohua</au><au>Zhang, Bao-Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delay-Variation-Dependent Criteria on Extended Dissipativity for Discrete-Time Neural Networks With Time-Varying Delay</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>34</volume><issue>3</issue><spage>1578</spage><epage>1587</epage><pages>1578-1587</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract><![CDATA[This article is concerned with the extended dissipativity of discrete-time neural networks (NNs) with time-varying delay. First, the necessary and sufficient condition on matrix-valued polynomial inequalities reported recently is extended to a general case, where the variable of the polynomial does not need to start from zero. Second, a novel Lyapunov functional with a delay-dependent Lyapunov matrix is constructed by taking into consideration more information on nonlinear activation functions. By employing the Lyapunov functional method, a novel delay and its variation-dependent criterion are obtained to investigate the effects of the time-varying delay and its variation rate on several performances, such as <inline-formula> <tex-math notation="LaTeX">H_\infty </tex-math></inline-formula> performance, passivity, and <inline-formula> <tex-math notation="LaTeX">l_{2}-l_\infty </tex-math></inline-formula> performance, of a delayed discrete-time NN in a unified framework. Finally, a numerical example is given to show that the proposed criterion outperforms some existing ones.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>34449397</pmid><doi>10.1109/TNNLS.2021.3105591</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0180-0897</orcidid><orcidid>https://orcid.org/0000-0002-0129-5010</orcidid><orcidid>https://orcid.org/0000-0002-7207-0716</orcidid><orcidid>https://orcid.org/0000-0003-0691-5386</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2023-03, Vol.34 (3), p.1578-1587 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_journals_2780983344 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Criteria Delay Delays Discrete-time neural networks (NNs) Dissipation extended dissipativity Functionals Germanium Learning systems Linear matrix inequalities Lyapunov functional Mathematical analysis Neural networks Polynomials Symmetric matrices time-varying delay Upper bound Variation |
title | Delay-Variation-Dependent Criteria on Extended Dissipativity for Discrete-Time Neural Networks With Time-Varying Delay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delay-Variation-Dependent%20Criteria%20on%20Extended%20Dissipativity%20for%20Discrete-Time%20Neural%20Networks%20With%20Time-Varying%20Delay&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Zhang,%20Xian-Ming&rft.date=2023-03-01&rft.volume=34&rft.issue=3&rft.spage=1578&rft.epage=1587&rft.pages=1578-1587&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2021.3105591&rft_dat=%3Cproquest_RIE%3E2566029945%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780983344&rft_id=info:pmid/34449397&rft_ieee_id=9524366&rfr_iscdi=true |