Serrin-Type Overdetermined Problems for Hessian Quotient Equations and Hessian Quotient Curvature Equations

We consider overdetermined problems for Hessian quotient equations and Hessian quotient curvature equations, which are fully nonlinear elliptic equations. We establish Rellich–Pohozaev-type identities for Hessian quotient equations and Hessian quotient curvature equations. Based on these identities...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2023-05, Vol.33 (5), Article 150
Hauptverfasser: Gao, Zhenghuan, Jia, Xiaohan, Zhang, Dekai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title The Journal of Geometric Analysis
container_volume 33
creator Gao, Zhenghuan
Jia, Xiaohan
Zhang, Dekai
description We consider overdetermined problems for Hessian quotient equations and Hessian quotient curvature equations, which are fully nonlinear elliptic equations. We establish Rellich–Pohozaev-type identities for Hessian quotient equations and Hessian quotient curvature equations. Based on these identities and the maximum principle for P functions, the symmetry of solutions can be proved in the Euclidean space. We also prove the related result for Hessian quotient equations in the hyperbolic space. Our results generalize the overdetermined problems for k -Hessian equations and k -curvature equations.
doi_str_mv 10.1007/s12220-023-01198-w
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2780843333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A739083040</galeid><sourcerecordid>A739083040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c239t-9db9460b40f180f2517cbec4f5ba9f9eac779b86811f6c7c6b768e3b30adb50f3</originalsourceid><addsrcrecordid>eNp9kcFqGzEQhkVpoamTF-hpoWelI2l3tToak9aFQBKSQm5C0o6CUltypN0Yv33W3YIPhWgOGmb-b2bgJ-Qrg0sGIL8XxjkHClxQYEx1dP-BnLGmURSAP36ccmiAtoq3n8mXUp4B6lbU8oz8ucecQ6QPhx1WN6-Yexwwb0PEvrrNyW5wWyqfcrXGUoKJ1d2YhoBxqK5eRjOEFEtlYv9_ezXmVzOMGU_Cc_LJm03Bi3__gvz-cfWwWtPrm5-_Vstr6rhQA1W9VXULtgbPOvC8YdJZdLVvrFFeoXFSKtu1HWO-ddK1VrYdCivA9LYBLxbk2zx3l9PLiGXQz2nMcVqpueygq8XxLcjlrHoyG9Qh-jRk46bocRtciujDVF9KoaATUMME8BlwOZWS0etdDluTD5qBPrqgZxf05IL-64LeT5CYoTKJ4xPm0y3vUG-YsozX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780843333</pqid></control><display><type>article</type><title>Serrin-Type Overdetermined Problems for Hessian Quotient Equations and Hessian Quotient Curvature Equations</title><source>SpringerNature Journals</source><creator>Gao, Zhenghuan ; Jia, Xiaohan ; Zhang, Dekai</creator><creatorcontrib>Gao, Zhenghuan ; Jia, Xiaohan ; Zhang, Dekai</creatorcontrib><description>We consider overdetermined problems for Hessian quotient equations and Hessian quotient curvature equations, which are fully nonlinear elliptic equations. We establish Rellich–Pohozaev-type identities for Hessian quotient equations and Hessian quotient curvature equations. Based on these identities and the maximum principle for P functions, the symmetry of solutions can be proved in the Euclidean space. We also prove the related result for Hessian quotient equations in the hyperbolic space. Our results generalize the overdetermined problems for k -Hessian equations and k -curvature equations.</description><identifier>ISSN: 1050-6926</identifier><identifier>EISSN: 1559-002X</identifier><identifier>DOI: 10.1007/s12220-023-01198-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Convex and Discrete Geometry ; Curvature ; Differential Geometry ; Dynamical Systems and Ergodic Theory ; Elliptic functions ; Euclidean geometry ; Fourier Analysis ; Geometry ; Global Analysis and Analysis on Manifolds ; Hyperbolic coordinates ; Identities ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Maximum principle ; Quotients</subject><ispartof>The Journal of Geometric Analysis, 2023-05, Vol.33 (5), Article 150</ispartof><rights>Mathematica Josephina, Inc. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c239t-9db9460b40f180f2517cbec4f5ba9f9eac779b86811f6c7c6b768e3b30adb50f3</cites><orcidid>0000-0002-9631-5386</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12220-023-01198-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12220-023-01198-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gao, Zhenghuan</creatorcontrib><creatorcontrib>Jia, Xiaohan</creatorcontrib><creatorcontrib>Zhang, Dekai</creatorcontrib><title>Serrin-Type Overdetermined Problems for Hessian Quotient Equations and Hessian Quotient Curvature Equations</title><title>The Journal of Geometric Analysis</title><addtitle>J Geom Anal</addtitle><description>We consider overdetermined problems for Hessian quotient equations and Hessian quotient curvature equations, which are fully nonlinear elliptic equations. We establish Rellich–Pohozaev-type identities for Hessian quotient equations and Hessian quotient curvature equations. Based on these identities and the maximum principle for P functions, the symmetry of solutions can be proved in the Euclidean space. We also prove the related result for Hessian quotient equations in the hyperbolic space. Our results generalize the overdetermined problems for k -Hessian equations and k -curvature equations.</description><subject>Abstract Harmonic Analysis</subject><subject>Convex and Discrete Geometry</subject><subject>Curvature</subject><subject>Differential Geometry</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Elliptic functions</subject><subject>Euclidean geometry</subject><subject>Fourier Analysis</subject><subject>Geometry</subject><subject>Global Analysis and Analysis on Manifolds</subject><subject>Hyperbolic coordinates</subject><subject>Identities</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Maximum principle</subject><subject>Quotients</subject><issn>1050-6926</issn><issn>1559-002X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kcFqGzEQhkVpoamTF-hpoWelI2l3tToak9aFQBKSQm5C0o6CUltypN0Yv33W3YIPhWgOGmb-b2bgJ-Qrg0sGIL8XxjkHClxQYEx1dP-BnLGmURSAP36ccmiAtoq3n8mXUp4B6lbU8oz8ucecQ6QPhx1WN6-Yexwwb0PEvrrNyW5wWyqfcrXGUoKJ1d2YhoBxqK5eRjOEFEtlYv9_ezXmVzOMGU_Cc_LJm03Bi3__gvz-cfWwWtPrm5-_Vstr6rhQA1W9VXULtgbPOvC8YdJZdLVvrFFeoXFSKtu1HWO-ddK1VrYdCivA9LYBLxbk2zx3l9PLiGXQz2nMcVqpueygq8XxLcjlrHoyG9Qh-jRk46bocRtciujDVF9KoaATUMME8BlwOZWS0etdDluTD5qBPrqgZxf05IL-64LeT5CYoTKJ4xPm0y3vUG-YsozX</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Gao, Zhenghuan</creator><creator>Jia, Xiaohan</creator><creator>Zhang, Dekai</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><orcidid>https://orcid.org/0000-0002-9631-5386</orcidid></search><sort><creationdate>20230501</creationdate><title>Serrin-Type Overdetermined Problems for Hessian Quotient Equations and Hessian Quotient Curvature Equations</title><author>Gao, Zhenghuan ; Jia, Xiaohan ; Zhang, Dekai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c239t-9db9460b40f180f2517cbec4f5ba9f9eac779b86811f6c7c6b768e3b30adb50f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Convex and Discrete Geometry</topic><topic>Curvature</topic><topic>Differential Geometry</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Elliptic functions</topic><topic>Euclidean geometry</topic><topic>Fourier Analysis</topic><topic>Geometry</topic><topic>Global Analysis and Analysis on Manifolds</topic><topic>Hyperbolic coordinates</topic><topic>Identities</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Maximum principle</topic><topic>Quotients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Zhenghuan</creatorcontrib><creatorcontrib>Jia, Xiaohan</creatorcontrib><creatorcontrib>Zhang, Dekai</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>The Journal of Geometric Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Zhenghuan</au><au>Jia, Xiaohan</au><au>Zhang, Dekai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Serrin-Type Overdetermined Problems for Hessian Quotient Equations and Hessian Quotient Curvature Equations</atitle><jtitle>The Journal of Geometric Analysis</jtitle><stitle>J Geom Anal</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>33</volume><issue>5</issue><artnum>150</artnum><issn>1050-6926</issn><eissn>1559-002X</eissn><abstract>We consider overdetermined problems for Hessian quotient equations and Hessian quotient curvature equations, which are fully nonlinear elliptic equations. We establish Rellich–Pohozaev-type identities for Hessian quotient equations and Hessian quotient curvature equations. Based on these identities and the maximum principle for P functions, the symmetry of solutions can be proved in the Euclidean space. We also prove the related result for Hessian quotient equations in the hyperbolic space. Our results generalize the overdetermined problems for k -Hessian equations and k -curvature equations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12220-023-01198-w</doi><orcidid>https://orcid.org/0000-0002-9631-5386</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1050-6926
ispartof The Journal of Geometric Analysis, 2023-05, Vol.33 (5), Article 150
issn 1050-6926
1559-002X
language eng
recordid cdi_proquest_journals_2780843333
source SpringerNature Journals
subjects Abstract Harmonic Analysis
Convex and Discrete Geometry
Curvature
Differential Geometry
Dynamical Systems and Ergodic Theory
Elliptic functions
Euclidean geometry
Fourier Analysis
Geometry
Global Analysis and Analysis on Manifolds
Hyperbolic coordinates
Identities
Mathematical analysis
Mathematics
Mathematics and Statistics
Maximum principle
Quotients
title Serrin-Type Overdetermined Problems for Hessian Quotient Equations and Hessian Quotient Curvature Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Serrin-Type%20Overdetermined%20Problems%20for%20Hessian%20Quotient%20Equations%20and%20Hessian%20Quotient%20Curvature%20Equations&rft.jtitle=The%20Journal%20of%20Geometric%20Analysis&rft.au=Gao,%20Zhenghuan&rft.date=2023-05-01&rft.volume=33&rft.issue=5&rft.artnum=150&rft.issn=1050-6926&rft.eissn=1559-002X&rft_id=info:doi/10.1007/s12220-023-01198-w&rft_dat=%3Cgale_proqu%3EA739083040%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780843333&rft_id=info:pmid/&rft_galeid=A739083040&rfr_iscdi=true