Multiphysics modeling and experimental verification of solidification point of melt-electrospun jet
Melt electrospinning has been recognized as an attractive solvent-free process over the past few decades to alleviate the solvent-related problems generated by traditional electrospinning techniques. In melt spinning, the drawing process of molten jets occurs in the liquid phase region before the ph...
Gespeichert in:
Veröffentlicht in: | Textile research journal 2023-03, Vol.93 (5-6), p.1251-1262 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1262 |
---|---|
container_issue | 5-6 |
container_start_page | 1251 |
container_title | Textile research journal |
container_volume | 93 |
creator | Liu, Kai Zheng, Yuansheng Newton, Md. All Amin Ge, Cheng Xin, Binjie |
description | Melt electrospinning has been recognized as an attractive solvent-free process over the past few decades to alleviate the solvent-related problems generated by traditional electrospinning techniques. In melt spinning, the drawing process of molten jets occurs in the liquid phase region before the phase transformation. Besides, the insufficient chain flow in the solid phase results in the non-stretchable properties of the jet in this state. This analysis predicted the phase transition displacement in the polymer jet during the melting process using a two-dimensional non-isothermal flow model integrated with an electric field. High-speed photography was employed to collect photographs of the phase transition point of the jet to verify the simulation results. Additionally, we evaluated the diameters of fibers manufactured with various phase transition displacements induced by different applied voltages. The findings of the experiments reveal that as the applied voltage is enhanced, the freezing point of the jet becomes gradually closer to the nozzle side, and the solidification length significantly reduces, resulting in smaller fiber diameter. Moreover, the results mentioned above are consistent with the law predicted by the simulation, proving the feasibility and accuracy of the model. This work will provide potential guidance for the study of nanoscale melt fibers from the perspective of fluid phase transformation. |
doi_str_mv | 10.1177/00405175221130774 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2780682154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_00405175221130774</sage_id><sourcerecordid>2780682154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-8ace3f4539a07c8a14fa9a999890526ecba23bd09d5ee6b64277f3869ffa39083</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcIvEOcWvxPYRVbykIi5wjlxnXVy5cYgdRP8eR0XqAXHa0e7M7O4gdE3wghAhbjHmuCKiopQQhoXgJ2hGBK_LDOUpmk3zciKco4sYtxhjKYWcIfMy-uT6j310Jha70IJ33abQXVvAdw-D20GXtC--MrTO6ORCVwRbxOBde-z0wXVp6u_ApxI8mDSE2I9dsYV0ic6s9hGufuscvT_cvy2fytXr4_PyblUaymkqpTbALK-Y0lgYqQm3WmmllFS4ojWYtaZs3WLVVgD1uuZUCMtkrazVTGHJ5ujm4NsP4XOEmJptGIcur2yokLiWlFQ8s8iBZfKFcQDb9PlLPewbgpspy-ZPllmzOGii3sDR9X_BD33adXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780682154</pqid></control><display><type>article</type><title>Multiphysics modeling and experimental verification of solidification point of melt-electrospun jet</title><source>SAGE Complete</source><creator>Liu, Kai ; Zheng, Yuansheng ; Newton, Md. All Amin ; Ge, Cheng ; Xin, Binjie</creator><creatorcontrib>Liu, Kai ; Zheng, Yuansheng ; Newton, Md. All Amin ; Ge, Cheng ; Xin, Binjie</creatorcontrib><description>Melt electrospinning has been recognized as an attractive solvent-free process over the past few decades to alleviate the solvent-related problems generated by traditional electrospinning techniques. In melt spinning, the drawing process of molten jets occurs in the liquid phase region before the phase transformation. Besides, the insufficient chain flow in the solid phase results in the non-stretchable properties of the jet in this state. This analysis predicted the phase transition displacement in the polymer jet during the melting process using a two-dimensional non-isothermal flow model integrated with an electric field. High-speed photography was employed to collect photographs of the phase transition point of the jet to verify the simulation results. Additionally, we evaluated the diameters of fibers manufactured with various phase transition displacements induced by different applied voltages. The findings of the experiments reveal that as the applied voltage is enhanced, the freezing point of the jet becomes gradually closer to the nozzle side, and the solidification length significantly reduces, resulting in smaller fiber diameter. Moreover, the results mentioned above are consistent with the law predicted by the simulation, proving the feasibility and accuracy of the model. This work will provide potential guidance for the study of nanoscale melt fibers from the perspective of fluid phase transformation.</description><identifier>ISSN: 0040-5175</identifier><identifier>EISSN: 1746-7748</identifier><identifier>DOI: 10.1177/00405175221130774</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Diameters ; Electric fields ; Electrospinning ; Fibers ; Freezing ; Freezing point ; High speed photography ; Isothermal flow ; Liquid phases ; Melt spinning ; Melting points ; Model accuracy ; Phase transitions ; Photography ; Polymers ; Solid phases ; Solidification ; Solidification point ; Solvents ; Transition points ; Two dimensional flow</subject><ispartof>Textile research journal, 2023-03, Vol.93 (5-6), p.1251-1262</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-8ace3f4539a07c8a14fa9a999890526ecba23bd09d5ee6b64277f3869ffa39083</citedby><cites>FETCH-LOGICAL-c242t-8ace3f4539a07c8a14fa9a999890526ecba23bd09d5ee6b64277f3869ffa39083</cites><orcidid>0000-0002-8975-3142 ; 0000-0002-9350-0295 ; 0000-0001-6006-547X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/00405175221130774$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/00405175221130774$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Zheng, Yuansheng</creatorcontrib><creatorcontrib>Newton, Md. All Amin</creatorcontrib><creatorcontrib>Ge, Cheng</creatorcontrib><creatorcontrib>Xin, Binjie</creatorcontrib><title>Multiphysics modeling and experimental verification of solidification point of melt-electrospun jet</title><title>Textile research journal</title><description>Melt electrospinning has been recognized as an attractive solvent-free process over the past few decades to alleviate the solvent-related problems generated by traditional electrospinning techniques. In melt spinning, the drawing process of molten jets occurs in the liquid phase region before the phase transformation. Besides, the insufficient chain flow in the solid phase results in the non-stretchable properties of the jet in this state. This analysis predicted the phase transition displacement in the polymer jet during the melting process using a two-dimensional non-isothermal flow model integrated with an electric field. High-speed photography was employed to collect photographs of the phase transition point of the jet to verify the simulation results. Additionally, we evaluated the diameters of fibers manufactured with various phase transition displacements induced by different applied voltages. The findings of the experiments reveal that as the applied voltage is enhanced, the freezing point of the jet becomes gradually closer to the nozzle side, and the solidification length significantly reduces, resulting in smaller fiber diameter. Moreover, the results mentioned above are consistent with the law predicted by the simulation, proving the feasibility and accuracy of the model. This work will provide potential guidance for the study of nanoscale melt fibers from the perspective of fluid phase transformation.</description><subject>Diameters</subject><subject>Electric fields</subject><subject>Electrospinning</subject><subject>Fibers</subject><subject>Freezing</subject><subject>Freezing point</subject><subject>High speed photography</subject><subject>Isothermal flow</subject><subject>Liquid phases</subject><subject>Melt spinning</subject><subject>Melting points</subject><subject>Model accuracy</subject><subject>Phase transitions</subject><subject>Photography</subject><subject>Polymers</subject><subject>Solid phases</subject><subject>Solidification</subject><subject>Solidification point</subject><subject>Solvents</subject><subject>Transition points</subject><subject>Two dimensional flow</subject><issn>0040-5175</issn><issn>1746-7748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMIHcIvEOcWvxPYRVbykIi5wjlxnXVy5cYgdRP8eR0XqAXHa0e7M7O4gdE3wghAhbjHmuCKiopQQhoXgJ2hGBK_LDOUpmk3zciKco4sYtxhjKYWcIfMy-uT6j310Jha70IJ33abQXVvAdw-D20GXtC--MrTO6ORCVwRbxOBde-z0wXVp6u_ApxI8mDSE2I9dsYV0ic6s9hGufuscvT_cvy2fytXr4_PyblUaymkqpTbALK-Y0lgYqQm3WmmllFS4ojWYtaZs3WLVVgD1uuZUCMtkrazVTGHJ5ujm4NsP4XOEmJptGIcur2yokLiWlFQ8s8iBZfKFcQDb9PlLPewbgpspy-ZPllmzOGii3sDR9X_BD33adXQ</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Liu, Kai</creator><creator>Zheng, Yuansheng</creator><creator>Newton, Md. All Amin</creator><creator>Ge, Cheng</creator><creator>Xin, Binjie</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8975-3142</orcidid><orcidid>https://orcid.org/0000-0002-9350-0295</orcidid><orcidid>https://orcid.org/0000-0001-6006-547X</orcidid></search><sort><creationdate>202303</creationdate><title>Multiphysics modeling and experimental verification of solidification point of melt-electrospun jet</title><author>Liu, Kai ; Zheng, Yuansheng ; Newton, Md. All Amin ; Ge, Cheng ; Xin, Binjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-8ace3f4539a07c8a14fa9a999890526ecba23bd09d5ee6b64277f3869ffa39083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Diameters</topic><topic>Electric fields</topic><topic>Electrospinning</topic><topic>Fibers</topic><topic>Freezing</topic><topic>Freezing point</topic><topic>High speed photography</topic><topic>Isothermal flow</topic><topic>Liquid phases</topic><topic>Melt spinning</topic><topic>Melting points</topic><topic>Model accuracy</topic><topic>Phase transitions</topic><topic>Photography</topic><topic>Polymers</topic><topic>Solid phases</topic><topic>Solidification</topic><topic>Solidification point</topic><topic>Solvents</topic><topic>Transition points</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Zheng, Yuansheng</creatorcontrib><creatorcontrib>Newton, Md. All Amin</creatorcontrib><creatorcontrib>Ge, Cheng</creatorcontrib><creatorcontrib>Xin, Binjie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Textile research journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kai</au><au>Zheng, Yuansheng</au><au>Newton, Md. All Amin</au><au>Ge, Cheng</au><au>Xin, Binjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiphysics modeling and experimental verification of solidification point of melt-electrospun jet</atitle><jtitle>Textile research journal</jtitle><date>2023-03</date><risdate>2023</risdate><volume>93</volume><issue>5-6</issue><spage>1251</spage><epage>1262</epage><pages>1251-1262</pages><issn>0040-5175</issn><eissn>1746-7748</eissn><abstract>Melt electrospinning has been recognized as an attractive solvent-free process over the past few decades to alleviate the solvent-related problems generated by traditional electrospinning techniques. In melt spinning, the drawing process of molten jets occurs in the liquid phase region before the phase transformation. Besides, the insufficient chain flow in the solid phase results in the non-stretchable properties of the jet in this state. This analysis predicted the phase transition displacement in the polymer jet during the melting process using a two-dimensional non-isothermal flow model integrated with an electric field. High-speed photography was employed to collect photographs of the phase transition point of the jet to verify the simulation results. Additionally, we evaluated the diameters of fibers manufactured with various phase transition displacements induced by different applied voltages. The findings of the experiments reveal that as the applied voltage is enhanced, the freezing point of the jet becomes gradually closer to the nozzle side, and the solidification length significantly reduces, resulting in smaller fiber diameter. Moreover, the results mentioned above are consistent with the law predicted by the simulation, proving the feasibility and accuracy of the model. This work will provide potential guidance for the study of nanoscale melt fibers from the perspective of fluid phase transformation.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/00405175221130774</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8975-3142</orcidid><orcidid>https://orcid.org/0000-0002-9350-0295</orcidid><orcidid>https://orcid.org/0000-0001-6006-547X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5175 |
ispartof | Textile research journal, 2023-03, Vol.93 (5-6), p.1251-1262 |
issn | 0040-5175 1746-7748 |
language | eng |
recordid | cdi_proquest_journals_2780682154 |
source | SAGE Complete |
subjects | Diameters Electric fields Electrospinning Fibers Freezing Freezing point High speed photography Isothermal flow Liquid phases Melt spinning Melting points Model accuracy Phase transitions Photography Polymers Solid phases Solidification Solidification point Solvents Transition points Two dimensional flow |
title | Multiphysics modeling and experimental verification of solidification point of melt-electrospun jet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiphysics%20modeling%20and%20experimental%20verification%20of%20solidification%20point%20of%20melt-electrospun%20jet&rft.jtitle=Textile%20research%20journal&rft.au=Liu,%20Kai&rft.date=2023-03&rft.volume=93&rft.issue=5-6&rft.spage=1251&rft.epage=1262&rft.pages=1251-1262&rft.issn=0040-5175&rft.eissn=1746-7748&rft_id=info:doi/10.1177/00405175221130774&rft_dat=%3Cproquest_cross%3E2780682154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780682154&rft_id=info:pmid/&rft_sage_id=10.1177_00405175221130774&rfr_iscdi=true |