Multiphysics modeling and experimental verification of solidification point of melt-electrospun jet

Melt electrospinning has been recognized as an attractive solvent-free process over the past few decades to alleviate the solvent-related problems generated by traditional electrospinning techniques. In melt spinning, the drawing process of molten jets occurs in the liquid phase region before the ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Textile research journal 2023-03, Vol.93 (5-6), p.1251-1262
Hauptverfasser: Liu, Kai, Zheng, Yuansheng, Newton, Md. All Amin, Ge, Cheng, Xin, Binjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1262
container_issue 5-6
container_start_page 1251
container_title Textile research journal
container_volume 93
creator Liu, Kai
Zheng, Yuansheng
Newton, Md. All Amin
Ge, Cheng
Xin, Binjie
description Melt electrospinning has been recognized as an attractive solvent-free process over the past few decades to alleviate the solvent-related problems generated by traditional electrospinning techniques. In melt spinning, the drawing process of molten jets occurs in the liquid phase region before the phase transformation. Besides, the insufficient chain flow in the solid phase results in the non-stretchable properties of the jet in this state. This analysis predicted the phase transition displacement in the polymer jet during the melting process using a two-dimensional non-isothermal flow model integrated with an electric field. High-speed photography was employed to collect photographs of the phase transition point of the jet to verify the simulation results. Additionally, we evaluated the diameters of fibers manufactured with various phase transition displacements induced by different applied voltages. The findings of the experiments reveal that as the applied voltage is enhanced, the freezing point of the jet becomes gradually closer to the nozzle side, and the solidification length significantly reduces, resulting in smaller fiber diameter. Moreover, the results mentioned above are consistent with the law predicted by the simulation, proving the feasibility and accuracy of the model. This work will provide potential guidance for the study of nanoscale melt fibers from the perspective of fluid phase transformation.
doi_str_mv 10.1177/00405175221130774
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2780682154</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_00405175221130774</sage_id><sourcerecordid>2780682154</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-8ace3f4539a07c8a14fa9a999890526ecba23bd09d5ee6b64277f3869ffa39083</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcIvEOcWvxPYRVbykIi5wjlxnXVy5cYgdRP8eR0XqAXHa0e7M7O4gdE3wghAhbjHmuCKiopQQhoXgJ2hGBK_LDOUpmk3zciKco4sYtxhjKYWcIfMy-uT6j310Jha70IJ33abQXVvAdw-D20GXtC--MrTO6ORCVwRbxOBde-z0wXVp6u_ApxI8mDSE2I9dsYV0ic6s9hGufuscvT_cvy2fytXr4_PyblUaymkqpTbALK-Y0lgYqQm3WmmllFS4ojWYtaZs3WLVVgD1uuZUCMtkrazVTGHJ5ujm4NsP4XOEmJptGIcur2yokLiWlFQ8s8iBZfKFcQDb9PlLPewbgpspy-ZPllmzOGii3sDR9X_BD33adXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780682154</pqid></control><display><type>article</type><title>Multiphysics modeling and experimental verification of solidification point of melt-electrospun jet</title><source>SAGE Complete</source><creator>Liu, Kai ; Zheng, Yuansheng ; Newton, Md. All Amin ; Ge, Cheng ; Xin, Binjie</creator><creatorcontrib>Liu, Kai ; Zheng, Yuansheng ; Newton, Md. All Amin ; Ge, Cheng ; Xin, Binjie</creatorcontrib><description>Melt electrospinning has been recognized as an attractive solvent-free process over the past few decades to alleviate the solvent-related problems generated by traditional electrospinning techniques. In melt spinning, the drawing process of molten jets occurs in the liquid phase region before the phase transformation. Besides, the insufficient chain flow in the solid phase results in the non-stretchable properties of the jet in this state. This analysis predicted the phase transition displacement in the polymer jet during the melting process using a two-dimensional non-isothermal flow model integrated with an electric field. High-speed photography was employed to collect photographs of the phase transition point of the jet to verify the simulation results. Additionally, we evaluated the diameters of fibers manufactured with various phase transition displacements induced by different applied voltages. The findings of the experiments reveal that as the applied voltage is enhanced, the freezing point of the jet becomes gradually closer to the nozzle side, and the solidification length significantly reduces, resulting in smaller fiber diameter. Moreover, the results mentioned above are consistent with the law predicted by the simulation, proving the feasibility and accuracy of the model. This work will provide potential guidance for the study of nanoscale melt fibers from the perspective of fluid phase transformation.</description><identifier>ISSN: 0040-5175</identifier><identifier>EISSN: 1746-7748</identifier><identifier>DOI: 10.1177/00405175221130774</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Diameters ; Electric fields ; Electrospinning ; Fibers ; Freezing ; Freezing point ; High speed photography ; Isothermal flow ; Liquid phases ; Melt spinning ; Melting points ; Model accuracy ; Phase transitions ; Photography ; Polymers ; Solid phases ; Solidification ; Solidification point ; Solvents ; Transition points ; Two dimensional flow</subject><ispartof>Textile research journal, 2023-03, Vol.93 (5-6), p.1251-1262</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-8ace3f4539a07c8a14fa9a999890526ecba23bd09d5ee6b64277f3869ffa39083</citedby><cites>FETCH-LOGICAL-c242t-8ace3f4539a07c8a14fa9a999890526ecba23bd09d5ee6b64277f3869ffa39083</cites><orcidid>0000-0002-8975-3142 ; 0000-0002-9350-0295 ; 0000-0001-6006-547X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/00405175221130774$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/00405175221130774$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Zheng, Yuansheng</creatorcontrib><creatorcontrib>Newton, Md. All Amin</creatorcontrib><creatorcontrib>Ge, Cheng</creatorcontrib><creatorcontrib>Xin, Binjie</creatorcontrib><title>Multiphysics modeling and experimental verification of solidification point of melt-electrospun jet</title><title>Textile research journal</title><description>Melt electrospinning has been recognized as an attractive solvent-free process over the past few decades to alleviate the solvent-related problems generated by traditional electrospinning techniques. In melt spinning, the drawing process of molten jets occurs in the liquid phase region before the phase transformation. Besides, the insufficient chain flow in the solid phase results in the non-stretchable properties of the jet in this state. This analysis predicted the phase transition displacement in the polymer jet during the melting process using a two-dimensional non-isothermal flow model integrated with an electric field. High-speed photography was employed to collect photographs of the phase transition point of the jet to verify the simulation results. Additionally, we evaluated the diameters of fibers manufactured with various phase transition displacements induced by different applied voltages. The findings of the experiments reveal that as the applied voltage is enhanced, the freezing point of the jet becomes gradually closer to the nozzle side, and the solidification length significantly reduces, resulting in smaller fiber diameter. Moreover, the results mentioned above are consistent with the law predicted by the simulation, proving the feasibility and accuracy of the model. This work will provide potential guidance for the study of nanoscale melt fibers from the perspective of fluid phase transformation.</description><subject>Diameters</subject><subject>Electric fields</subject><subject>Electrospinning</subject><subject>Fibers</subject><subject>Freezing</subject><subject>Freezing point</subject><subject>High speed photography</subject><subject>Isothermal flow</subject><subject>Liquid phases</subject><subject>Melt spinning</subject><subject>Melting points</subject><subject>Model accuracy</subject><subject>Phase transitions</subject><subject>Photography</subject><subject>Polymers</subject><subject>Solid phases</subject><subject>Solidification</subject><subject>Solidification point</subject><subject>Solvents</subject><subject>Transition points</subject><subject>Two dimensional flow</subject><issn>0040-5175</issn><issn>1746-7748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIlMIHcIvEOcWvxPYRVbykIi5wjlxnXVy5cYgdRP8eR0XqAXHa0e7M7O4gdE3wghAhbjHmuCKiopQQhoXgJ2hGBK_LDOUpmk3zciKco4sYtxhjKYWcIfMy-uT6j310Jha70IJ33abQXVvAdw-D20GXtC--MrTO6ORCVwRbxOBde-z0wXVp6u_ApxI8mDSE2I9dsYV0ic6s9hGufuscvT_cvy2fytXr4_PyblUaymkqpTbALK-Y0lgYqQm3WmmllFS4ojWYtaZs3WLVVgD1uuZUCMtkrazVTGHJ5ujm4NsP4XOEmJptGIcur2yokLiWlFQ8s8iBZfKFcQDb9PlLPewbgpspy-ZPllmzOGii3sDR9X_BD33adXQ</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Liu, Kai</creator><creator>Zheng, Yuansheng</creator><creator>Newton, Md. All Amin</creator><creator>Ge, Cheng</creator><creator>Xin, Binjie</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-8975-3142</orcidid><orcidid>https://orcid.org/0000-0002-9350-0295</orcidid><orcidid>https://orcid.org/0000-0001-6006-547X</orcidid></search><sort><creationdate>202303</creationdate><title>Multiphysics modeling and experimental verification of solidification point of melt-electrospun jet</title><author>Liu, Kai ; Zheng, Yuansheng ; Newton, Md. All Amin ; Ge, Cheng ; Xin, Binjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-8ace3f4539a07c8a14fa9a999890526ecba23bd09d5ee6b64277f3869ffa39083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Diameters</topic><topic>Electric fields</topic><topic>Electrospinning</topic><topic>Fibers</topic><topic>Freezing</topic><topic>Freezing point</topic><topic>High speed photography</topic><topic>Isothermal flow</topic><topic>Liquid phases</topic><topic>Melt spinning</topic><topic>Melting points</topic><topic>Model accuracy</topic><topic>Phase transitions</topic><topic>Photography</topic><topic>Polymers</topic><topic>Solid phases</topic><topic>Solidification</topic><topic>Solidification point</topic><topic>Solvents</topic><topic>Transition points</topic><topic>Two dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Kai</creatorcontrib><creatorcontrib>Zheng, Yuansheng</creatorcontrib><creatorcontrib>Newton, Md. All Amin</creatorcontrib><creatorcontrib>Ge, Cheng</creatorcontrib><creatorcontrib>Xin, Binjie</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Textile research journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Kai</au><au>Zheng, Yuansheng</au><au>Newton, Md. All Amin</au><au>Ge, Cheng</au><au>Xin, Binjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiphysics modeling and experimental verification of solidification point of melt-electrospun jet</atitle><jtitle>Textile research journal</jtitle><date>2023-03</date><risdate>2023</risdate><volume>93</volume><issue>5-6</issue><spage>1251</spage><epage>1262</epage><pages>1251-1262</pages><issn>0040-5175</issn><eissn>1746-7748</eissn><abstract>Melt electrospinning has been recognized as an attractive solvent-free process over the past few decades to alleviate the solvent-related problems generated by traditional electrospinning techniques. In melt spinning, the drawing process of molten jets occurs in the liquid phase region before the phase transformation. Besides, the insufficient chain flow in the solid phase results in the non-stretchable properties of the jet in this state. This analysis predicted the phase transition displacement in the polymer jet during the melting process using a two-dimensional non-isothermal flow model integrated with an electric field. High-speed photography was employed to collect photographs of the phase transition point of the jet to verify the simulation results. Additionally, we evaluated the diameters of fibers manufactured with various phase transition displacements induced by different applied voltages. The findings of the experiments reveal that as the applied voltage is enhanced, the freezing point of the jet becomes gradually closer to the nozzle side, and the solidification length significantly reduces, resulting in smaller fiber diameter. Moreover, the results mentioned above are consistent with the law predicted by the simulation, proving the feasibility and accuracy of the model. This work will provide potential guidance for the study of nanoscale melt fibers from the perspective of fluid phase transformation.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/00405175221130774</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8975-3142</orcidid><orcidid>https://orcid.org/0000-0002-9350-0295</orcidid><orcidid>https://orcid.org/0000-0001-6006-547X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0040-5175
ispartof Textile research journal, 2023-03, Vol.93 (5-6), p.1251-1262
issn 0040-5175
1746-7748
language eng
recordid cdi_proquest_journals_2780682154
source SAGE Complete
subjects Diameters
Electric fields
Electrospinning
Fibers
Freezing
Freezing point
High speed photography
Isothermal flow
Liquid phases
Melt spinning
Melting points
Model accuracy
Phase transitions
Photography
Polymers
Solid phases
Solidification
Solidification point
Solvents
Transition points
Two dimensional flow
title Multiphysics modeling and experimental verification of solidification point of melt-electrospun jet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T01%3A10%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiphysics%20modeling%20and%20experimental%20verification%20of%20solidification%20point%20of%20melt-electrospun%20jet&rft.jtitle=Textile%20research%20journal&rft.au=Liu,%20Kai&rft.date=2023-03&rft.volume=93&rft.issue=5-6&rft.spage=1251&rft.epage=1262&rft.pages=1251-1262&rft.issn=0040-5175&rft.eissn=1746-7748&rft_id=info:doi/10.1177/00405175221130774&rft_dat=%3Cproquest_cross%3E2780682154%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780682154&rft_id=info:pmid/&rft_sage_id=10.1177_00405175221130774&rfr_iscdi=true