Non-linear structures, chaos, and bubbles in U.S. regional housing markets
This study analyzes the nonlinear price pattern and its underlying source of nonlinearity for U.S. housing markets along with the plausible explanations of chaos and bubble-like characteristics during 1987 to 2019. The results from the BDS test show evidence of nonlinear dependence in overall U.S. h...
Gespeichert in:
Veröffentlicht in: | Journal of economics and finance 2023-03, Vol.47 (1), p.63-93 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 93 |
---|---|
container_issue | 1 |
container_start_page | 63 |
container_title | Journal of economics and finance |
container_volume | 47 |
creator | Jirasakuldech, Benjamas Emekter, Riza Bui, Thuy |
description | This study analyzes the nonlinear price pattern and its underlying source of nonlinearity for U.S. housing markets along with the plausible explanations of chaos and bubble-like characteristics during 1987 to 2019. The results from the BDS test show evidence of nonlinear dependence in overall U.S. housing markets along with home markets in twenty cities. The K-map Z-map analysis shows that nonlinear dependence in all cities is consistent with chaotic behavior. The nonlinear dependence is also substantiated with the use of Markov chain test where nonlinearity is due to the persistence of either positive or negative returns. Applying the duration dependence test on positive runs confirms that housing markets in all five regions experience some episodes of bubbles, except for home markets in Detroit and Minneapolis in Midwest region. A time reversibility test further provides supporting evidence that the mechanism generating nonlinear dependence in housing markets in all four cities in Midwest region comes from non-Gaussian innovations. Similar finding is reported in housing markets in other regions including Atlanta, Charlotte, Dallas, San Diego, and San Francisco, suggesting that a linear function with non-Gaussian error terms is appropriate for modelling these housing markets. |
doi_str_mv | 10.1007/s12197-022-09598-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2780620830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780620830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-b7a1de9ff9f30a5c5108f662ad8b1a26032072361ef6524def51d3080eb2ebd03</originalsourceid><addsrcrecordid>eNp9UMtOwzAQjBBIlMIPcLLEFZf1Ok7sI6p4qoID9Gw5id2mlLjYyYG_xyVIvXGaleaxo8mySwYzBlDeRIZMlRQQKSihJM2PsglTXFJV5vlxukGIRKE4zc5i3AAw5Aon2fOL7-i27awJJPZhqPsh2HhN6rXxCUzXkGqoqq2NpO3IcvY2I8GuWt-ZLVn7Ibbdinya8GH7eJ6dOLON9uIPp9ny_u59_kgXrw9P89sFrTlXPa1KwxqrnFOOgxG1YCBdUaBpZMUMFsARSuQFs64QmDfWCdZwkGArtFUDfJpdjbm74L8GG3u98UNIhaLGUkKBIPlehaOqDj7GYJ3ehTY1_dYM9H4zPW6m02b6dzOdJxMZTbb2XRsPFslloUpEkSR8lMREdisbDt__Cf4B9Fh4Zg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780620830</pqid></control><display><type>article</type><title>Non-linear structures, chaos, and bubbles in U.S. regional housing markets</title><source>Springer Online Journals Complete</source><source>Business Source Complete</source><creator>Jirasakuldech, Benjamas ; Emekter, Riza ; Bui, Thuy</creator><creatorcontrib>Jirasakuldech, Benjamas ; Emekter, Riza ; Bui, Thuy</creatorcontrib><description>This study analyzes the nonlinear price pattern and its underlying source of nonlinearity for U.S. housing markets along with the plausible explanations of chaos and bubble-like characteristics during 1987 to 2019. The results from the BDS test show evidence of nonlinear dependence in overall U.S. housing markets along with home markets in twenty cities. The K-map Z-map analysis shows that nonlinear dependence in all cities is consistent with chaotic behavior. The nonlinear dependence is also substantiated with the use of Markov chain test where nonlinearity is due to the persistence of either positive or negative returns. Applying the duration dependence test on positive runs confirms that housing markets in all five regions experience some episodes of bubbles, except for home markets in Detroit and Minneapolis in Midwest region. A time reversibility test further provides supporting evidence that the mechanism generating nonlinear dependence in housing markets in all four cities in Midwest region comes from non-Gaussian innovations. Similar finding is reported in housing markets in other regions including Atlanta, Charlotte, Dallas, San Diego, and San Francisco, suggesting that a linear function with non-Gaussian error terms is appropriate for modelling these housing markets.</description><identifier>ISSN: 1055-0925</identifier><identifier>EISSN: 1938-9744</identifier><identifier>DOI: 10.1007/s12197-022-09598-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Economics ; Economics and Finance ; Finance ; Forecasting ; Housing ; Housing prices ; Literature reviews ; Lump sum ; Macroeconomics ; Macroeconomics/Monetary Economics//Financial Economics ; Markov analysis ; Regions</subject><ispartof>Journal of economics and finance, 2023-03, Vol.47 (1), p.63-93</ispartof><rights>Academy of Economics and Finance 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Mar 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-b7a1de9ff9f30a5c5108f662ad8b1a26032072361ef6524def51d3080eb2ebd03</citedby><cites>FETCH-LOGICAL-c339t-b7a1de9ff9f30a5c5108f662ad8b1a26032072361ef6524def51d3080eb2ebd03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12197-022-09598-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12197-022-09598-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Jirasakuldech, Benjamas</creatorcontrib><creatorcontrib>Emekter, Riza</creatorcontrib><creatorcontrib>Bui, Thuy</creatorcontrib><title>Non-linear structures, chaos, and bubbles in U.S. regional housing markets</title><title>Journal of economics and finance</title><addtitle>J Econ Finan</addtitle><description>This study analyzes the nonlinear price pattern and its underlying source of nonlinearity for U.S. housing markets along with the plausible explanations of chaos and bubble-like characteristics during 1987 to 2019. The results from the BDS test show evidence of nonlinear dependence in overall U.S. housing markets along with home markets in twenty cities. The K-map Z-map analysis shows that nonlinear dependence in all cities is consistent with chaotic behavior. The nonlinear dependence is also substantiated with the use of Markov chain test where nonlinearity is due to the persistence of either positive or negative returns. Applying the duration dependence test on positive runs confirms that housing markets in all five regions experience some episodes of bubbles, except for home markets in Detroit and Minneapolis in Midwest region. A time reversibility test further provides supporting evidence that the mechanism generating nonlinear dependence in housing markets in all four cities in Midwest region comes from non-Gaussian innovations. Similar finding is reported in housing markets in other regions including Atlanta, Charlotte, Dallas, San Diego, and San Francisco, suggesting that a linear function with non-Gaussian error terms is appropriate for modelling these housing markets.</description><subject>Economics</subject><subject>Economics and Finance</subject><subject>Finance</subject><subject>Forecasting</subject><subject>Housing</subject><subject>Housing prices</subject><subject>Literature reviews</subject><subject>Lump sum</subject><subject>Macroeconomics</subject><subject>Macroeconomics/Monetary Economics//Financial Economics</subject><subject>Markov analysis</subject><subject>Regions</subject><issn>1055-0925</issn><issn>1938-9744</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UMtOwzAQjBBIlMIPcLLEFZf1Ok7sI6p4qoID9Gw5id2mlLjYyYG_xyVIvXGaleaxo8mySwYzBlDeRIZMlRQQKSihJM2PsglTXFJV5vlxukGIRKE4zc5i3AAw5Aon2fOL7-i27awJJPZhqPsh2HhN6rXxCUzXkGqoqq2NpO3IcvY2I8GuWt-ZLVn7Ibbdinya8GH7eJ6dOLON9uIPp9ny_u59_kgXrw9P89sFrTlXPa1KwxqrnFOOgxG1YCBdUaBpZMUMFsARSuQFs64QmDfWCdZwkGArtFUDfJpdjbm74L8GG3u98UNIhaLGUkKBIPlehaOqDj7GYJ3ehTY1_dYM9H4zPW6m02b6dzOdJxMZTbb2XRsPFslloUpEkSR8lMREdisbDt__Cf4B9Fh4Zg</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Jirasakuldech, Benjamas</creator><creator>Emekter, Riza</creator><creator>Bui, Thuy</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>4S-</scope><scope>4T-</scope><scope>4U-</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>K60</scope><scope>K6~</scope><scope>K8~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M0T</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20230301</creationdate><title>Non-linear structures, chaos, and bubbles in U.S. regional housing markets</title><author>Jirasakuldech, Benjamas ; Emekter, Riza ; Bui, Thuy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-b7a1de9ff9f30a5c5108f662ad8b1a26032072361ef6524def51d3080eb2ebd03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Economics</topic><topic>Economics and Finance</topic><topic>Finance</topic><topic>Forecasting</topic><topic>Housing</topic><topic>Housing prices</topic><topic>Literature reviews</topic><topic>Lump sum</topic><topic>Macroeconomics</topic><topic>Macroeconomics/Monetary Economics//Financial Economics</topic><topic>Markov analysis</topic><topic>Regions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jirasakuldech, Benjamas</creatorcontrib><creatorcontrib>Emekter, Riza</creatorcontrib><creatorcontrib>Bui, Thuy</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>BPIR.com Limited</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>DELNET Management Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Healthcare Administration Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of economics and finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jirasakuldech, Benjamas</au><au>Emekter, Riza</au><au>Bui, Thuy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-linear structures, chaos, and bubbles in U.S. regional housing markets</atitle><jtitle>Journal of economics and finance</jtitle><stitle>J Econ Finan</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>47</volume><issue>1</issue><spage>63</spage><epage>93</epage><pages>63-93</pages><issn>1055-0925</issn><eissn>1938-9744</eissn><abstract>This study analyzes the nonlinear price pattern and its underlying source of nonlinearity for U.S. housing markets along with the plausible explanations of chaos and bubble-like characteristics during 1987 to 2019. The results from the BDS test show evidence of nonlinear dependence in overall U.S. housing markets along with home markets in twenty cities. The K-map Z-map analysis shows that nonlinear dependence in all cities is consistent with chaotic behavior. The nonlinear dependence is also substantiated with the use of Markov chain test where nonlinearity is due to the persistence of either positive or negative returns. Applying the duration dependence test on positive runs confirms that housing markets in all five regions experience some episodes of bubbles, except for home markets in Detroit and Minneapolis in Midwest region. A time reversibility test further provides supporting evidence that the mechanism generating nonlinear dependence in housing markets in all four cities in Midwest region comes from non-Gaussian innovations. Similar finding is reported in housing markets in other regions including Atlanta, Charlotte, Dallas, San Diego, and San Francisco, suggesting that a linear function with non-Gaussian error terms is appropriate for modelling these housing markets.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s12197-022-09598-4</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1055-0925 |
ispartof | Journal of economics and finance, 2023-03, Vol.47 (1), p.63-93 |
issn | 1055-0925 1938-9744 |
language | eng |
recordid | cdi_proquest_journals_2780620830 |
source | Springer Online Journals Complete; Business Source Complete |
subjects | Economics Economics and Finance Finance Forecasting Housing Housing prices Literature reviews Lump sum Macroeconomics Macroeconomics/Monetary Economics//Financial Economics Markov analysis Regions |
title | Non-linear structures, chaos, and bubbles in U.S. regional housing markets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A47%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-linear%20structures,%20chaos,%20and%20bubbles%20in%20U.S.%20regional%20housing%20markets&rft.jtitle=Journal%20of%20economics%20and%20finance&rft.au=Jirasakuldech,%20Benjamas&rft.date=2023-03-01&rft.volume=47&rft.issue=1&rft.spage=63&rft.epage=93&rft.pages=63-93&rft.issn=1055-0925&rft.eissn=1938-9744&rft_id=info:doi/10.1007/s12197-022-09598-4&rft_dat=%3Cproquest_cross%3E2780620830%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780620830&rft_id=info:pmid/&rfr_iscdi=true |