U-Statistics for Importance-Weighted Variational Inference

We propose the use of U-statistics to reduce variance for gradient estimation in importance-weighted variational inference. The key observation is that, given a base gradient estimator that requires \(m > 1\) samples and a total of \(n > m\) samples to be used for estimation, lower variance is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-02
Hauptverfasser: Burroni, Javier, Takatsu, Kenta, Domke, Justin, Sheldon, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Burroni, Javier
Takatsu, Kenta
Domke, Justin
Sheldon, Daniel
description We propose the use of U-statistics to reduce variance for gradient estimation in importance-weighted variational inference. The key observation is that, given a base gradient estimator that requires \(m > 1\) samples and a total of \(n > m\) samples to be used for estimation, lower variance is achieved by averaging the base estimator on overlapping batches of size \(m\) than disjoint batches, as currently done. We use classical U-statistic theory to analyze the variance reduction, and propose novel approximations with theoretical guarantees to ensure computational efficiency. We find empirically that U-statistic variance reduction can lead to modest to significant improvements in inference performance on a range of models, with little computational cost.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2780576253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780576253</sourcerecordid><originalsourceid>FETCH-proquest_journals_27805762533</originalsourceid><addsrcrecordid>eNqNi0sKwjAUAIMgWLR3CLgOxBfTFLei2LW_ZQn1VVNqUvPS-9uFB3A1i5mZsQyU2ohyC7BgOVEnpYTCgNYqY7urOCebHCXXEG9D5NV7CDFZ36C4o3u-Ej74zUY3RcHbnle-xYiTXrF5a3vC_MclWx8Pl_1JDDF8RqRUd2GM00I1mFJqU4BW6r_qC9KeNwY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780576253</pqid></control><display><type>article</type><title>U-Statistics for Importance-Weighted Variational Inference</title><source>Free E- Journals</source><creator>Burroni, Javier ; Takatsu, Kenta ; Domke, Justin ; Sheldon, Daniel</creator><creatorcontrib>Burroni, Javier ; Takatsu, Kenta ; Domke, Justin ; Sheldon, Daniel</creatorcontrib><description>We propose the use of U-statistics to reduce variance for gradient estimation in importance-weighted variational inference. The key observation is that, given a base gradient estimator that requires \(m &gt; 1\) samples and a total of \(n &gt; m\) samples to be used for estimation, lower variance is achieved by averaging the base estimator on overlapping batches of size \(m\) than disjoint batches, as currently done. We use classical U-statistic theory to analyze the variance reduction, and propose novel approximations with theoretical guarantees to ensure computational efficiency. We find empirically that U-statistic variance reduction can lead to modest to significant improvements in inference performance on a range of models, with little computational cost.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computational efficiency ; Computing costs ; Samples ; Statistical inference ; Variance analysis</subject><ispartof>arXiv.org, 2023-02</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Burroni, Javier</creatorcontrib><creatorcontrib>Takatsu, Kenta</creatorcontrib><creatorcontrib>Domke, Justin</creatorcontrib><creatorcontrib>Sheldon, Daniel</creatorcontrib><title>U-Statistics for Importance-Weighted Variational Inference</title><title>arXiv.org</title><description>We propose the use of U-statistics to reduce variance for gradient estimation in importance-weighted variational inference. The key observation is that, given a base gradient estimator that requires \(m &gt; 1\) samples and a total of \(n &gt; m\) samples to be used for estimation, lower variance is achieved by averaging the base estimator on overlapping batches of size \(m\) than disjoint batches, as currently done. We use classical U-statistic theory to analyze the variance reduction, and propose novel approximations with theoretical guarantees to ensure computational efficiency. We find empirically that U-statistic variance reduction can lead to modest to significant improvements in inference performance on a range of models, with little computational cost.</description><subject>Computational efficiency</subject><subject>Computing costs</subject><subject>Samples</subject><subject>Statistical inference</subject><subject>Variance analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi0sKwjAUAIMgWLR3CLgOxBfTFLei2LW_ZQn1VVNqUvPS-9uFB3A1i5mZsQyU2ohyC7BgOVEnpYTCgNYqY7urOCebHCXXEG9D5NV7CDFZ36C4o3u-Ej74zUY3RcHbnle-xYiTXrF5a3vC_MclWx8Pl_1JDDF8RqRUd2GM00I1mFJqU4BW6r_qC9KeNwY</recordid><startdate>20230227</startdate><enddate>20230227</enddate><creator>Burroni, Javier</creator><creator>Takatsu, Kenta</creator><creator>Domke, Justin</creator><creator>Sheldon, Daniel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230227</creationdate><title>U-Statistics for Importance-Weighted Variational Inference</title><author>Burroni, Javier ; Takatsu, Kenta ; Domke, Justin ; Sheldon, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27805762533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computational efficiency</topic><topic>Computing costs</topic><topic>Samples</topic><topic>Statistical inference</topic><topic>Variance analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Burroni, Javier</creatorcontrib><creatorcontrib>Takatsu, Kenta</creatorcontrib><creatorcontrib>Domke, Justin</creatorcontrib><creatorcontrib>Sheldon, Daniel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burroni, Javier</au><au>Takatsu, Kenta</au><au>Domke, Justin</au><au>Sheldon, Daniel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>U-Statistics for Importance-Weighted Variational Inference</atitle><jtitle>arXiv.org</jtitle><date>2023-02-27</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We propose the use of U-statistics to reduce variance for gradient estimation in importance-weighted variational inference. The key observation is that, given a base gradient estimator that requires \(m &gt; 1\) samples and a total of \(n &gt; m\) samples to be used for estimation, lower variance is achieved by averaging the base estimator on overlapping batches of size \(m\) than disjoint batches, as currently done. We use classical U-statistic theory to analyze the variance reduction, and propose novel approximations with theoretical guarantees to ensure computational efficiency. We find empirically that U-statistic variance reduction can lead to modest to significant improvements in inference performance on a range of models, with little computational cost.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2780576253
source Free E- Journals
subjects Computational efficiency
Computing costs
Samples
Statistical inference
Variance analysis
title U-Statistics for Importance-Weighted Variational Inference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T20%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=U-Statistics%20for%20Importance-Weighted%20Variational%20Inference&rft.jtitle=arXiv.org&rft.au=Burroni,%20Javier&rft.date=2023-02-27&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2780576253%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780576253&rft_id=info:pmid/&rfr_iscdi=true