Enhanced stability of perovskite Pr0.6Sr0.4Fe0.9Nb0.1O3-δ oxygen transport membrane for water splitting

The development of a perovskite-type oxygen transport membrane with high stability is desirable to meet the application of thermochemical water splitting to hydrogen production. The effect of stability enhancement of doped high valence ions of Nb 5+ in Pr 0.6 Sr 0.4 Fe 0.9 Nb 0.1 O 3- δ (PSFN) oxyge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2023-03, Vol.29 (3), p.1267-1272
Hauptverfasser: Liu, Yanbo, Sun, Qiangchao, Duan, Tong, Liu, Chaoyun, Cheng, Hongwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1272
container_issue 3
container_start_page 1267
container_title Ionics
container_volume 29
creator Liu, Yanbo
Sun, Qiangchao
Duan, Tong
Liu, Chaoyun
Cheng, Hongwei
description The development of a perovskite-type oxygen transport membrane with high stability is desirable to meet the application of thermochemical water splitting to hydrogen production. The effect of stability enhancement of doped high valence ions of Nb 5+ in Pr 0.6 Sr 0.4 Fe 0.9 Nb 0.1 O 3- δ (PSFN) oxygen transport membrane was studied systematically, which is influenced by the crystal structure, thermal expansion property, and roles of Fe 3+/4+ ions. The introduction of Nb inhibits the high-temperature phase transition, thermal expansion, and lattice oxygen release, enhancing the structural stability even in a reducing atmosphere. Furthermore, the decrease in the average valence of Fe ions also enhances the chemical stability of PSFN. The relative proportion of Fe 3+ and Fe 4+ closer to 2:1, a considered steady status for the oxygen permeation process, contributes to the long-term stability of H 2 production performance from water splitting.
doi_str_mv 10.1007/s11581-023-04913-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2780438064</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780438064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-5567f458b169cc767848593b82ae3e5cb8008443de1f0f292710361087614fd33</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4CrgOvXmZ5LMUkqrQlFBXYeZadJObSdjkqp9L5_DZ3LqCO7c3MuF7zsXDkLnFEYUQF1GSjNNCTBOQOSUE36ABlRLRkBJOEQDyIUiCoQ6RicxrgCkpEwN0HLSLIumsnMcU1HW6zrtsHe4tcG_xZc6WfwQYCQfuyGmFkb5Xdm9vOfk6xP7j93CNjiFoomtDwlv7KbsDoudD_i9SDbg2HbIVDeLU3TkinW0Z797iJ6nk6fxDZndX9-Or2ak4jRPJMukciLTJZV5VSmptNBZzkvNCsttVpUaQAvB55Y6cCxnigKXFLSSVLg550N00XPb4F-3Niaz8tvQdC8NUxoE1yBFl2J9qgo-xmCdaUO9KcLOUDB7o6Y3ajqj5seo2aN5X4pduFnY8If-p_UNzR53WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780438064</pqid></control><display><type>article</type><title>Enhanced stability of perovskite Pr0.6Sr0.4Fe0.9Nb0.1O3-δ oxygen transport membrane for water splitting</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Yanbo ; Sun, Qiangchao ; Duan, Tong ; Liu, Chaoyun ; Cheng, Hongwei</creator><creatorcontrib>Liu, Yanbo ; Sun, Qiangchao ; Duan, Tong ; Liu, Chaoyun ; Cheng, Hongwei</creatorcontrib><description>The development of a perovskite-type oxygen transport membrane with high stability is desirable to meet the application of thermochemical water splitting to hydrogen production. The effect of stability enhancement of doped high valence ions of Nb 5+ in Pr 0.6 Sr 0.4 Fe 0.9 Nb 0.1 O 3- δ (PSFN) oxygen transport membrane was studied systematically, which is influenced by the crystal structure, thermal expansion property, and roles of Fe 3+/4+ ions. The introduction of Nb inhibits the high-temperature phase transition, thermal expansion, and lattice oxygen release, enhancing the structural stability even in a reducing atmosphere. Furthermore, the decrease in the average valence of Fe ions also enhances the chemical stability of PSFN. The relative proportion of Fe 3+ and Fe 4+ closer to 2:1, a considered steady status for the oxygen permeation process, contributes to the long-term stability of H 2 production performance from water splitting.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-023-04913-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Crystal structure ; Electrochemistry ; Energy Storage ; Ferric ions ; High temperature ; Hydrogen production ; Membranes ; Optical and Electronic Materials ; Oxygen ; Perovskites ; Phase transitions ; Renewable and Green Energy ; Short Communication ; Structural stability ; Thermal expansion ; Water splitting</subject><ispartof>Ionics, 2023-03, Vol.29 (3), p.1267-1272</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-5567f458b169cc767848593b82ae3e5cb8008443de1f0f292710361087614fd33</citedby><cites>FETCH-LOGICAL-c319t-5567f458b169cc767848593b82ae3e5cb8008443de1f0f292710361087614fd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-023-04913-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-023-04913-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liu, Yanbo</creatorcontrib><creatorcontrib>Sun, Qiangchao</creatorcontrib><creatorcontrib>Duan, Tong</creatorcontrib><creatorcontrib>Liu, Chaoyun</creatorcontrib><creatorcontrib>Cheng, Hongwei</creatorcontrib><title>Enhanced stability of perovskite Pr0.6Sr0.4Fe0.9Nb0.1O3-δ oxygen transport membrane for water splitting</title><title>Ionics</title><addtitle>Ionics</addtitle><description>The development of a perovskite-type oxygen transport membrane with high stability is desirable to meet the application of thermochemical water splitting to hydrogen production. The effect of stability enhancement of doped high valence ions of Nb 5+ in Pr 0.6 Sr 0.4 Fe 0.9 Nb 0.1 O 3- δ (PSFN) oxygen transport membrane was studied systematically, which is influenced by the crystal structure, thermal expansion property, and roles of Fe 3+/4+ ions. The introduction of Nb inhibits the high-temperature phase transition, thermal expansion, and lattice oxygen release, enhancing the structural stability even in a reducing atmosphere. Furthermore, the decrease in the average valence of Fe ions also enhances the chemical stability of PSFN. The relative proportion of Fe 3+ and Fe 4+ closer to 2:1, a considered steady status for the oxygen permeation process, contributes to the long-term stability of H 2 production performance from water splitting.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Crystal structure</subject><subject>Electrochemistry</subject><subject>Energy Storage</subject><subject>Ferric ions</subject><subject>High temperature</subject><subject>Hydrogen production</subject><subject>Membranes</subject><subject>Optical and Electronic Materials</subject><subject>Oxygen</subject><subject>Perovskites</subject><subject>Phase transitions</subject><subject>Renewable and Green Energy</subject><subject>Short Communication</subject><subject>Structural stability</subject><subject>Thermal expansion</subject><subject>Water splitting</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWKsv4CrgOvXmZ5LMUkqrQlFBXYeZadJObSdjkqp9L5_DZ3LqCO7c3MuF7zsXDkLnFEYUQF1GSjNNCTBOQOSUE36ABlRLRkBJOEQDyIUiCoQ6RicxrgCkpEwN0HLSLIumsnMcU1HW6zrtsHe4tcG_xZc6WfwQYCQfuyGmFkb5Xdm9vOfk6xP7j93CNjiFoomtDwlv7KbsDoudD_i9SDbg2HbIVDeLU3TkinW0Z797iJ6nk6fxDZndX9-Or2ak4jRPJMukciLTJZV5VSmptNBZzkvNCsttVpUaQAvB55Y6cCxnigKXFLSSVLg550N00XPb4F-3Niaz8tvQdC8NUxoE1yBFl2J9qgo-xmCdaUO9KcLOUDB7o6Y3ajqj5seo2aN5X4pduFnY8If-p_UNzR53WQ</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Liu, Yanbo</creator><creator>Sun, Qiangchao</creator><creator>Duan, Tong</creator><creator>Liu, Chaoyun</creator><creator>Cheng, Hongwei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>Enhanced stability of perovskite Pr0.6Sr0.4Fe0.9Nb0.1O3-δ oxygen transport membrane for water splitting</title><author>Liu, Yanbo ; Sun, Qiangchao ; Duan, Tong ; Liu, Chaoyun ; Cheng, Hongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-5567f458b169cc767848593b82ae3e5cb8008443de1f0f292710361087614fd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Crystal structure</topic><topic>Electrochemistry</topic><topic>Energy Storage</topic><topic>Ferric ions</topic><topic>High temperature</topic><topic>Hydrogen production</topic><topic>Membranes</topic><topic>Optical and Electronic Materials</topic><topic>Oxygen</topic><topic>Perovskites</topic><topic>Phase transitions</topic><topic>Renewable and Green Energy</topic><topic>Short Communication</topic><topic>Structural stability</topic><topic>Thermal expansion</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yanbo</creatorcontrib><creatorcontrib>Sun, Qiangchao</creatorcontrib><creatorcontrib>Duan, Tong</creatorcontrib><creatorcontrib>Liu, Chaoyun</creatorcontrib><creatorcontrib>Cheng, Hongwei</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yanbo</au><au>Sun, Qiangchao</au><au>Duan, Tong</au><au>Liu, Chaoyun</au><au>Cheng, Hongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced stability of perovskite Pr0.6Sr0.4Fe0.9Nb0.1O3-δ oxygen transport membrane for water splitting</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>29</volume><issue>3</issue><spage>1267</spage><epage>1272</epage><pages>1267-1272</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>The development of a perovskite-type oxygen transport membrane with high stability is desirable to meet the application of thermochemical water splitting to hydrogen production. The effect of stability enhancement of doped high valence ions of Nb 5+ in Pr 0.6 Sr 0.4 Fe 0.9 Nb 0.1 O 3- δ (PSFN) oxygen transport membrane was studied systematically, which is influenced by the crystal structure, thermal expansion property, and roles of Fe 3+/4+ ions. The introduction of Nb inhibits the high-temperature phase transition, thermal expansion, and lattice oxygen release, enhancing the structural stability even in a reducing atmosphere. Furthermore, the decrease in the average valence of Fe ions also enhances the chemical stability of PSFN. The relative proportion of Fe 3+ and Fe 4+ closer to 2:1, a considered steady status for the oxygen permeation process, contributes to the long-term stability of H 2 production performance from water splitting.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-023-04913-3</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2023-03, Vol.29 (3), p.1267-1272
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_2780438064
source SpringerLink Journals - AutoHoldings
subjects Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Crystal structure
Electrochemistry
Energy Storage
Ferric ions
High temperature
Hydrogen production
Membranes
Optical and Electronic Materials
Oxygen
Perovskites
Phase transitions
Renewable and Green Energy
Short Communication
Structural stability
Thermal expansion
Water splitting
title Enhanced stability of perovskite Pr0.6Sr0.4Fe0.9Nb0.1O3-δ oxygen transport membrane for water splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A25%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20stability%20of%20perovskite%20Pr0.6Sr0.4Fe0.9Nb0.1O3-%CE%B4%20oxygen%20transport%20membrane%20for%20water%20splitting&rft.jtitle=Ionics&rft.au=Liu,%20Yanbo&rft.date=2023-03-01&rft.volume=29&rft.issue=3&rft.spage=1267&rft.epage=1272&rft.pages=1267-1272&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-023-04913-3&rft_dat=%3Cproquest_cross%3E2780438064%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780438064&rft_id=info:pmid/&rfr_iscdi=true