Core–shell C@SnO2 as bifunctional cathode electrocatalyst for high performance Zn-air batteries

The slow reaction kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during the charging and discharging process result in inferior cycle life and low-energy conversion efficiency of commercial zinc-air batteries (ZABs). Stannic oxide (SnO 2 ) has received increasing att...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2023-03, Vol.29 (3), p.1149-1157
Hauptverfasser: Zeng, Panjing, Zhang, Chaomin, Ding, Mengzhao, Huang, Yuchen, Luo, Menghao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1157
container_issue 3
container_start_page 1149
container_title Ionics
container_volume 29
creator Zeng, Panjing
Zhang, Chaomin
Ding, Mengzhao
Huang, Yuchen
Luo, Menghao
description The slow reaction kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during the charging and discharging process result in inferior cycle life and low-energy conversion efficiency of commercial zinc-air batteries (ZABs). Stannic oxide (SnO 2 ) has received increasing attention for its unique advantages such as low cost, good stability, and high catalytic activity. In present work, mesoporous nanosphere carbon@stannic oxide (C@SnO 2 ) core–shell structures with C as the inner layer and SnO 2 as the outer shell are successfully prepared. When C@SnO 2 serves as the cathode for ZABs, its specific surface area (245 m 2  g −1 ) provides amounts of chemically active sites for ORR and OER. Similarly, carbon can not only increase the electrical conductivity of electrocatalyst, but also act as a support body for the core–shell structure which gives the material a robust structure and distinctive morphology. When C@SnO 2 are employed as cathode in ZABs, it exhibits excellent electrocatalytic activity with half-wave potential (0.88 V) for ORR and onset potential (1.45 V) for OER. In addition, it shows a superior charging-discharging cycle stability. This work offers an insight for the selection and preparation of high-performance electrocatalysts.
doi_str_mv 10.1007/s11581-022-04854-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2780437445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780437445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-6435601e378e57e6f16d1122be24da2848d4d067c10c66f4364c287f7651a03a3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAkyWmAPXP7HDBqr4kyoxAAuL5To3Tao0LrY7dOMdeEOeBEOQ2JjuOdI5R1cfIacMzhmAvoiMlRUrgPMCZFXKQuyRCatUtlrBPpnApdSFBqkPyVGMKwClGNcTYmc-4Of7R2yx7-ns6ml45NRGuuia7eBS5wfbU2dT62uk2KNLwWdr-11MtPGBtt2ypRsMWa_t4JC-DoXtAl3YlDB0GI_JQWP7iCe_d0pebm-eZ_fF_PHuYXY9LxwHSIWSolTAUOgKS42qYapmjPMFcllbXsmqljUo7Rg4pRoplHS80o1WJbMgrJiSs3F3E_zbFmMyK78N-f1ouK5ACi1lmVN8TLngYwzYmE3o1jbsDAPzjdKMKE1GaX5QGpFLYizFHB6WGP6m_2l9AWLkdtw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780437445</pqid></control><display><type>article</type><title>Core–shell C@SnO2 as bifunctional cathode electrocatalyst for high performance Zn-air batteries</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zeng, Panjing ; Zhang, Chaomin ; Ding, Mengzhao ; Huang, Yuchen ; Luo, Menghao</creator><creatorcontrib>Zeng, Panjing ; Zhang, Chaomin ; Ding, Mengzhao ; Huang, Yuchen ; Luo, Menghao</creatorcontrib><description>The slow reaction kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during the charging and discharging process result in inferior cycle life and low-energy conversion efficiency of commercial zinc-air batteries (ZABs). Stannic oxide (SnO 2 ) has received increasing attention for its unique advantages such as low cost, good stability, and high catalytic activity. In present work, mesoporous nanosphere carbon@stannic oxide (C@SnO 2 ) core–shell structures with C as the inner layer and SnO 2 as the outer shell are successfully prepared. When C@SnO 2 serves as the cathode for ZABs, its specific surface area (245 m 2  g −1 ) provides amounts of chemically active sites for ORR and OER. Similarly, carbon can not only increase the electrical conductivity of electrocatalyst, but also act as a support body for the core–shell structure which gives the material a robust structure and distinctive morphology. When C@SnO 2 are employed as cathode in ZABs, it exhibits excellent electrocatalytic activity with half-wave potential (0.88 V) for ORR and onset potential (1.45 V) for OER. In addition, it shows a superior charging-discharging cycle stability. This work offers an insight for the selection and preparation of high-performance electrocatalysts.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-022-04854-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Carbon ; Catalytic activity ; Cathodes ; Charging ; Chemical reduction ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Core-shell structure ; Discharge ; Electrical resistivity ; Electrocatalysts ; Electrochemistry ; Energy conversion efficiency ; Energy Storage ; Metal air batteries ; Nanospheres ; Optical and Electronic Materials ; Original Paper ; Oxygen evolution reactions ; Oxygen reduction reactions ; Reaction kinetics ; Renewable and Green Energy ; Stability ; Tin dioxide ; Zinc-oxygen batteries</subject><ispartof>Ionics, 2023-03, Vol.29 (3), p.1149-1157</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-6435601e378e57e6f16d1122be24da2848d4d067c10c66f4364c287f7651a03a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-022-04854-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-022-04854-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zeng, Panjing</creatorcontrib><creatorcontrib>Zhang, Chaomin</creatorcontrib><creatorcontrib>Ding, Mengzhao</creatorcontrib><creatorcontrib>Huang, Yuchen</creatorcontrib><creatorcontrib>Luo, Menghao</creatorcontrib><title>Core–shell C@SnO2 as bifunctional cathode electrocatalyst for high performance Zn-air batteries</title><title>Ionics</title><addtitle>Ionics</addtitle><description>The slow reaction kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during the charging and discharging process result in inferior cycle life and low-energy conversion efficiency of commercial zinc-air batteries (ZABs). Stannic oxide (SnO 2 ) has received increasing attention for its unique advantages such as low cost, good stability, and high catalytic activity. In present work, mesoporous nanosphere carbon@stannic oxide (C@SnO 2 ) core–shell structures with C as the inner layer and SnO 2 as the outer shell are successfully prepared. When C@SnO 2 serves as the cathode for ZABs, its specific surface area (245 m 2  g −1 ) provides amounts of chemically active sites for ORR and OER. Similarly, carbon can not only increase the electrical conductivity of electrocatalyst, but also act as a support body for the core–shell structure which gives the material a robust structure and distinctive morphology. When C@SnO 2 are employed as cathode in ZABs, it exhibits excellent electrocatalytic activity with half-wave potential (0.88 V) for ORR and onset potential (1.45 V) for OER. In addition, it shows a superior charging-discharging cycle stability. This work offers an insight for the selection and preparation of high-performance electrocatalysts.</description><subject>Carbon</subject><subject>Catalytic activity</subject><subject>Cathodes</subject><subject>Charging</subject><subject>Chemical reduction</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Core-shell structure</subject><subject>Discharge</subject><subject>Electrical resistivity</subject><subject>Electrocatalysts</subject><subject>Electrochemistry</subject><subject>Energy conversion efficiency</subject><subject>Energy Storage</subject><subject>Metal air batteries</subject><subject>Nanospheres</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Oxygen evolution reactions</subject><subject>Oxygen reduction reactions</subject><subject>Reaction kinetics</subject><subject>Renewable and Green Energy</subject><subject>Stability</subject><subject>Tin dioxide</subject><subject>Zinc-oxygen batteries</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwAkyWmAPXP7HDBqr4kyoxAAuL5To3Tao0LrY7dOMdeEOeBEOQ2JjuOdI5R1cfIacMzhmAvoiMlRUrgPMCZFXKQuyRCatUtlrBPpnApdSFBqkPyVGMKwClGNcTYmc-4Of7R2yx7-ns6ml45NRGuuia7eBS5wfbU2dT62uk2KNLwWdr-11MtPGBtt2ypRsMWa_t4JC-DoXtAl3YlDB0GI_JQWP7iCe_d0pebm-eZ_fF_PHuYXY9LxwHSIWSolTAUOgKS42qYapmjPMFcllbXsmqljUo7Rg4pRoplHS80o1WJbMgrJiSs3F3E_zbFmMyK78N-f1ouK5ACi1lmVN8TLngYwzYmE3o1jbsDAPzjdKMKE1GaX5QGpFLYizFHB6WGP6m_2l9AWLkdtw</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Zeng, Panjing</creator><creator>Zhang, Chaomin</creator><creator>Ding, Mengzhao</creator><creator>Huang, Yuchen</creator><creator>Luo, Menghao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>Core–shell C@SnO2 as bifunctional cathode electrocatalyst for high performance Zn-air batteries</title><author>Zeng, Panjing ; Zhang, Chaomin ; Ding, Mengzhao ; Huang, Yuchen ; Luo, Menghao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-6435601e378e57e6f16d1122be24da2848d4d067c10c66f4364c287f7651a03a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>Catalytic activity</topic><topic>Cathodes</topic><topic>Charging</topic><topic>Chemical reduction</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Core-shell structure</topic><topic>Discharge</topic><topic>Electrical resistivity</topic><topic>Electrocatalysts</topic><topic>Electrochemistry</topic><topic>Energy conversion efficiency</topic><topic>Energy Storage</topic><topic>Metal air batteries</topic><topic>Nanospheres</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Oxygen evolution reactions</topic><topic>Oxygen reduction reactions</topic><topic>Reaction kinetics</topic><topic>Renewable and Green Energy</topic><topic>Stability</topic><topic>Tin dioxide</topic><topic>Zinc-oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Panjing</creatorcontrib><creatorcontrib>Zhang, Chaomin</creatorcontrib><creatorcontrib>Ding, Mengzhao</creatorcontrib><creatorcontrib>Huang, Yuchen</creatorcontrib><creatorcontrib>Luo, Menghao</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Panjing</au><au>Zhang, Chaomin</au><au>Ding, Mengzhao</au><au>Huang, Yuchen</au><au>Luo, Menghao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Core–shell C@SnO2 as bifunctional cathode electrocatalyst for high performance Zn-air batteries</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>29</volume><issue>3</issue><spage>1149</spage><epage>1157</epage><pages>1149-1157</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>The slow reaction kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) during the charging and discharging process result in inferior cycle life and low-energy conversion efficiency of commercial zinc-air batteries (ZABs). Stannic oxide (SnO 2 ) has received increasing attention for its unique advantages such as low cost, good stability, and high catalytic activity. In present work, mesoporous nanosphere carbon@stannic oxide (C@SnO 2 ) core–shell structures with C as the inner layer and SnO 2 as the outer shell are successfully prepared. When C@SnO 2 serves as the cathode for ZABs, its specific surface area (245 m 2  g −1 ) provides amounts of chemically active sites for ORR and OER. Similarly, carbon can not only increase the electrical conductivity of electrocatalyst, but also act as a support body for the core–shell structure which gives the material a robust structure and distinctive morphology. When C@SnO 2 are employed as cathode in ZABs, it exhibits excellent electrocatalytic activity with half-wave potential (0.88 V) for ORR and onset potential (1.45 V) for OER. In addition, it shows a superior charging-discharging cycle stability. This work offers an insight for the selection and preparation of high-performance electrocatalysts.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-022-04854-3</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2023-03, Vol.29 (3), p.1149-1157
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_2780437445
source SpringerLink Journals - AutoHoldings
subjects Carbon
Catalytic activity
Cathodes
Charging
Chemical reduction
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Core-shell structure
Discharge
Electrical resistivity
Electrocatalysts
Electrochemistry
Energy conversion efficiency
Energy Storage
Metal air batteries
Nanospheres
Optical and Electronic Materials
Original Paper
Oxygen evolution reactions
Oxygen reduction reactions
Reaction kinetics
Renewable and Green Energy
Stability
Tin dioxide
Zinc-oxygen batteries
title Core–shell C@SnO2 as bifunctional cathode electrocatalyst for high performance Zn-air batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A53%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Core%E2%80%93shell%20C@SnO2%20as%20bifunctional%20cathode%20electrocatalyst%20for%20high%20performance%20Zn-air%20batteries&rft.jtitle=Ionics&rft.au=Zeng,%20Panjing&rft.date=2023-03-01&rft.volume=29&rft.issue=3&rft.spage=1149&rft.epage=1157&rft.pages=1149-1157&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-022-04854-3&rft_dat=%3Cproquest_cross%3E2780437445%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780437445&rft_id=info:pmid/&rfr_iscdi=true