SMPC: boosting social media popularity prediction with caption
Social media popularity prediction refers to using multi-modal content to predict the popularity of a post offered by an internet user. It is an effective way to explore advanced forecasting trends and make more popularity-sensitive strategic decisions for the future. Existing methods attempt to exp...
Gespeichert in:
Veröffentlicht in: | Multimedia systems 2023-04, Vol.29 (2), p.577-586 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 586 |
---|---|
container_issue | 2 |
container_start_page | 577 |
container_title | Multimedia systems |
container_volume | 29 |
creator | Liu, An-An Wang, Xiaowen Xu, Ning Liu, Jing Su, Yuting Zhang, Quan Zhang, Shenyuan Tang, Yejun Guo, Junbo Jin, Guoqing Li, Xuanya |
description | Social media popularity prediction refers to using multi-modal content to predict the popularity of a post offered by an internet user. It is an effective way to explore advanced forecasting trends and make more popularity-sensitive strategic decisions for the future. Existing methods attempt to explore various multi-model features to solve this task, which only focus on local information, lacking global understanding for the post’s content. In this paper, we propose social media popularity prediction with caption (SMPC), a novel architecture that integrates the caption as the global representation into the existing multi-model-feature-based popularity prediction method. To make good use of the generated captions, we process them in word-level, sentence-level and length-level ways, obtaining three kinds of caption features. To incorporate caption features, we exploit seven variants of the architecture by concatenating features in all the possible manners, for the feature fusion and training different combinations for the CatBoost regression. Extensive experiments are conducted on Social Media Prediction Dataset (SMPD) and show that the proposed approaches can achieve competing results against state-of-the-art models. |
doi_str_mv | 10.1007/s00530-022-01030-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2780437281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780437281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-e314ee77667153a676a7bee60e0b966ac80bb33e6048942f57a937b61c0fe2773</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwFPAc3SS7GZ2PQhS_AcVBfUcsjFbU9rNmmyRfntTV_DmaWYe780MP0JOOZxzALxIAKUEBkIw4JC7co9MeCEF41Ul9skE6kKwolbikByltATgqCRMyNXL4_PskjYhpMF3C5qC9WZF1-7dG9qHfrMy0Q9b2ses2MGHjn754YNa0--GY3LQmlVyJ791St5ub15n92z-dPcwu54zKxAG5iQvnENUCnkpjUJlsHFOgYOmVsrYCppGyiwUVX60LdHUEhvFLbROIMopORv39jF8blwa9DJsYpdPaoEVFBJFxbNLjC4bQ0rRtbqPfm3iVnPQO0565KQzJ_3DSZc5JMdQyuZu4eLf6n9S3zjYaXE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780437281</pqid></control><display><type>article</type><title>SMPC: boosting social media popularity prediction with caption</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, An-An ; Wang, Xiaowen ; Xu, Ning ; Liu, Jing ; Su, Yuting ; Zhang, Quan ; Zhang, Shenyuan ; Tang, Yejun ; Guo, Junbo ; Jin, Guoqing ; Li, Xuanya</creator><creatorcontrib>Liu, An-An ; Wang, Xiaowen ; Xu, Ning ; Liu, Jing ; Su, Yuting ; Zhang, Quan ; Zhang, Shenyuan ; Tang, Yejun ; Guo, Junbo ; Jin, Guoqing ; Li, Xuanya</creatorcontrib><description>Social media popularity prediction refers to using multi-modal content to predict the popularity of a post offered by an internet user. It is an effective way to explore advanced forecasting trends and make more popularity-sensitive strategic decisions for the future. Existing methods attempt to explore various multi-model features to solve this task, which only focus on local information, lacking global understanding for the post’s content. In this paper, we propose social media popularity prediction with caption (SMPC), a novel architecture that integrates the caption as the global representation into the existing multi-model-feature-based popularity prediction method. To make good use of the generated captions, we process them in word-level, sentence-level and length-level ways, obtaining three kinds of caption features. To incorporate caption features, we exploit seven variants of the architecture by concatenating features in all the possible manners, for the feature fusion and training different combinations for the CatBoost regression. Extensive experiments are conducted on Social Media Prediction Dataset (SMPD) and show that the proposed approaches can achieve competing results against state-of-the-art models.</description><identifier>ISSN: 0942-4962</identifier><identifier>EISSN: 1432-1882</identifier><identifier>DOI: 10.1007/s00530-022-01030-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computer Communication Networks ; Computer Graphics ; Computer Science ; Cryptology ; Data Storage Representation ; Digital media ; Multimedia Information Systems ; Operating Systems ; Social networks ; Special Issue Paper</subject><ispartof>Multimedia systems, 2023-04, Vol.29 (2), p.577-586</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-e314ee77667153a676a7bee60e0b966ac80bb33e6048942f57a937b61c0fe2773</cites><orcidid>0000-0002-7526-4356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00530-022-01030-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00530-022-01030-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Liu, An-An</creatorcontrib><creatorcontrib>Wang, Xiaowen</creatorcontrib><creatorcontrib>Xu, Ning</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Su, Yuting</creatorcontrib><creatorcontrib>Zhang, Quan</creatorcontrib><creatorcontrib>Zhang, Shenyuan</creatorcontrib><creatorcontrib>Tang, Yejun</creatorcontrib><creatorcontrib>Guo, Junbo</creatorcontrib><creatorcontrib>Jin, Guoqing</creatorcontrib><creatorcontrib>Li, Xuanya</creatorcontrib><title>SMPC: boosting social media popularity prediction with caption</title><title>Multimedia systems</title><addtitle>Multimedia Systems</addtitle><description>Social media popularity prediction refers to using multi-modal content to predict the popularity of a post offered by an internet user. It is an effective way to explore advanced forecasting trends and make more popularity-sensitive strategic decisions for the future. Existing methods attempt to explore various multi-model features to solve this task, which only focus on local information, lacking global understanding for the post’s content. In this paper, we propose social media popularity prediction with caption (SMPC), a novel architecture that integrates the caption as the global representation into the existing multi-model-feature-based popularity prediction method. To make good use of the generated captions, we process them in word-level, sentence-level and length-level ways, obtaining three kinds of caption features. To incorporate caption features, we exploit seven variants of the architecture by concatenating features in all the possible manners, for the feature fusion and training different combinations for the CatBoost regression. Extensive experiments are conducted on Social Media Prediction Dataset (SMPD) and show that the proposed approaches can achieve competing results against state-of-the-art models.</description><subject>Computer Communication Networks</subject><subject>Computer Graphics</subject><subject>Computer Science</subject><subject>Cryptology</subject><subject>Data Storage Representation</subject><subject>Digital media</subject><subject>Multimedia Information Systems</subject><subject>Operating Systems</subject><subject>Social networks</subject><subject>Special Issue Paper</subject><issn>0942-4962</issn><issn>1432-1882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwFPAc3SS7GZ2PQhS_AcVBfUcsjFbU9rNmmyRfntTV_DmaWYe780MP0JOOZxzALxIAKUEBkIw4JC7co9MeCEF41Ul9skE6kKwolbikByltATgqCRMyNXL4_PskjYhpMF3C5qC9WZF1-7dG9qHfrMy0Q9b2ses2MGHjn754YNa0--GY3LQmlVyJ791St5ub15n92z-dPcwu54zKxAG5iQvnENUCnkpjUJlsHFOgYOmVsrYCppGyiwUVX60LdHUEhvFLbROIMopORv39jF8blwa9DJsYpdPaoEVFBJFxbNLjC4bQ0rRtbqPfm3iVnPQO0565KQzJ_3DSZc5JMdQyuZu4eLf6n9S3zjYaXE</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Liu, An-An</creator><creator>Wang, Xiaowen</creator><creator>Xu, Ning</creator><creator>Liu, Jing</creator><creator>Su, Yuting</creator><creator>Zhang, Quan</creator><creator>Zhang, Shenyuan</creator><creator>Tang, Yejun</creator><creator>Guo, Junbo</creator><creator>Jin, Guoqing</creator><creator>Li, Xuanya</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7526-4356</orcidid></search><sort><creationdate>20230401</creationdate><title>SMPC: boosting social media popularity prediction with caption</title><author>Liu, An-An ; Wang, Xiaowen ; Xu, Ning ; Liu, Jing ; Su, Yuting ; Zhang, Quan ; Zhang, Shenyuan ; Tang, Yejun ; Guo, Junbo ; Jin, Guoqing ; Li, Xuanya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-e314ee77667153a676a7bee60e0b966ac80bb33e6048942f57a937b61c0fe2773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer Communication Networks</topic><topic>Computer Graphics</topic><topic>Computer Science</topic><topic>Cryptology</topic><topic>Data Storage Representation</topic><topic>Digital media</topic><topic>Multimedia Information Systems</topic><topic>Operating Systems</topic><topic>Social networks</topic><topic>Special Issue Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, An-An</creatorcontrib><creatorcontrib>Wang, Xiaowen</creatorcontrib><creatorcontrib>Xu, Ning</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Su, Yuting</creatorcontrib><creatorcontrib>Zhang, Quan</creatorcontrib><creatorcontrib>Zhang, Shenyuan</creatorcontrib><creatorcontrib>Tang, Yejun</creatorcontrib><creatorcontrib>Guo, Junbo</creatorcontrib><creatorcontrib>Jin, Guoqing</creatorcontrib><creatorcontrib>Li, Xuanya</creatorcontrib><collection>CrossRef</collection><jtitle>Multimedia systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, An-An</au><au>Wang, Xiaowen</au><au>Xu, Ning</au><au>Liu, Jing</au><au>Su, Yuting</au><au>Zhang, Quan</au><au>Zhang, Shenyuan</au><au>Tang, Yejun</au><au>Guo, Junbo</au><au>Jin, Guoqing</au><au>Li, Xuanya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SMPC: boosting social media popularity prediction with caption</atitle><jtitle>Multimedia systems</jtitle><stitle>Multimedia Systems</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>29</volume><issue>2</issue><spage>577</spage><epage>586</epage><pages>577-586</pages><issn>0942-4962</issn><eissn>1432-1882</eissn><abstract>Social media popularity prediction refers to using multi-modal content to predict the popularity of a post offered by an internet user. It is an effective way to explore advanced forecasting trends and make more popularity-sensitive strategic decisions for the future. Existing methods attempt to explore various multi-model features to solve this task, which only focus on local information, lacking global understanding for the post’s content. In this paper, we propose social media popularity prediction with caption (SMPC), a novel architecture that integrates the caption as the global representation into the existing multi-model-feature-based popularity prediction method. To make good use of the generated captions, we process them in word-level, sentence-level and length-level ways, obtaining three kinds of caption features. To incorporate caption features, we exploit seven variants of the architecture by concatenating features in all the possible manners, for the feature fusion and training different combinations for the CatBoost regression. Extensive experiments are conducted on Social Media Prediction Dataset (SMPD) and show that the proposed approaches can achieve competing results against state-of-the-art models.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00530-022-01030-5</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7526-4356</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0942-4962 |
ispartof | Multimedia systems, 2023-04, Vol.29 (2), p.577-586 |
issn | 0942-4962 1432-1882 |
language | eng |
recordid | cdi_proquest_journals_2780437281 |
source | SpringerLink Journals - AutoHoldings |
subjects | Computer Communication Networks Computer Graphics Computer Science Cryptology Data Storage Representation Digital media Multimedia Information Systems Operating Systems Social networks Special Issue Paper |
title | SMPC: boosting social media popularity prediction with caption |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T14%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SMPC:%20boosting%20social%20media%20popularity%20prediction%20with%20caption&rft.jtitle=Multimedia%20systems&rft.au=Liu,%20An-An&rft.date=2023-04-01&rft.volume=29&rft.issue=2&rft.spage=577&rft.epage=586&rft.pages=577-586&rft.issn=0942-4962&rft.eissn=1432-1882&rft_id=info:doi/10.1007/s00530-022-01030-5&rft_dat=%3Cproquest_cross%3E2780437281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780437281&rft_id=info:pmid/&rfr_iscdi=true |