Polarized emission from strongly magnetized sources
Anomalous X-ray pulsars (AXPs) and Soft gamma repeaters (SGRs) form together a single class of astrophysical sources, commonly associated to magnetars. New-generation X-ray polarimeters will play a key role in assessing the nature of these sources by directly probing the star magnetic field. In the...
Gespeichert in:
Veröffentlicht in: | Proceedings of the International Astronomical Union 2020-06, Vol.16 (S363), p.276-279 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 279 |
---|---|
container_issue | S363 |
container_start_page | 276 |
container_title | Proceedings of the International Astronomical Union |
container_volume | 16 |
creator | Taverna, Roberto Turolla, Roberto Zane, Silvia Suleimanov, Valery Potekhin, Alexander Y. |
description | Anomalous X-ray pulsars (AXPs) and Soft gamma repeaters (SGRs) form together a single class of astrophysical sources, commonly associated to magnetars. New-generation X-ray polarimeters will play a key role in assessing the nature of these sources by directly probing the star magnetic field. In the highly magnetized environment radiation is expected to be strongly polarized and such a measure will be easily within reach of IXPE and eXTP. Polarization measurements will eventually confirm the presence of ultra-strong magnetic fields, probing the magnetar scenario. In this work we will discuss theoretical expectations for the polarization signature of AXPs and SGRs and present numerical simulations for the detector response of the polarimeters currently under construction. We will also show how these sources can be used to test vacuum birefringence, a QED effect predicted by Heisemberg and Euler in the Thirties and not experimentally verified as yet. |
doi_str_mv | 10.1017/S174392132200028X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2780430165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S174392132200028X</cupid><sourcerecordid>2780430165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c227x-9ee765777c5d613763934f8e2a11b553d04fbea13ae92a020b6a841938bf7ca23</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFb_AG8Bz9H5SLLJUYpfUFBQwVvYJJOQkmTrbgvWv97UFj2IpxmG33vzeEqdI1wioL56Rh1xRshEAEDp24GabE9hRoSHPzvysTrxfgEQJSnHE8VPtjOu_ZQqkL71vrVDUDvbB37l7NB0m6A3zSCrb8LbtSvFn6qj2nRezvZzql5vb15m9-H88e5hdj0PSyL9EWYiOom11mVcJcg64YyjOhUyiEUccwVRXYhBNpKRAYIiMWmEGadFrUtDPFUXO9-ls-9r8at8MQYYxpc56RQiBkzikcIdVTrrvZM6X7q2N26TI-TbbvI_3Ywa3mtMX7i2auTX-n_VFyawZSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780430165</pqid></control><display><type>article</type><title>Polarized emission from strongly magnetized sources</title><source>Cambridge University Press Journals Complete</source><creator>Taverna, Roberto ; Turolla, Roberto ; Zane, Silvia ; Suleimanov, Valery ; Potekhin, Alexander Y.</creator><creatorcontrib>Taverna, Roberto ; Turolla, Roberto ; Zane, Silvia ; Suleimanov, Valery ; Potekhin, Alexander Y.</creatorcontrib><description>Anomalous X-ray pulsars (AXPs) and Soft gamma repeaters (SGRs) form together a single class of astrophysical sources, commonly associated to magnetars. New-generation X-ray polarimeters will play a key role in assessing the nature of these sources by directly probing the star magnetic field. In the highly magnetized environment radiation is expected to be strongly polarized and such a measure will be easily within reach of IXPE and eXTP. Polarization measurements will eventually confirm the presence of ultra-strong magnetic fields, probing the magnetar scenario. In this work we will discuss theoretical expectations for the polarization signature of AXPs and SGRs and present numerical simulations for the detector response of the polarimeters currently under construction. We will also show how these sources can be used to test vacuum birefringence, a QED effect predicted by Heisemberg and Euler in the Thirties and not experimentally verified as yet.</description><identifier>ISSN: 1743-9213</identifier><identifier>EISSN: 1743-9221</identifier><identifier>DOI: 10.1017/S174392132200028X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Approximation ; Astronomy ; Atoms & subatomic particles ; Birefringence ; Charged particles ; Contributed Paper ; Generation X ; Magnetars ; Magnetic fields ; Polarimeters ; Polarization ; Pulsars ; Radiation ; Repeaters ; Simulation ; Stars & galaxies ; X ray sources</subject><ispartof>Proceedings of the International Astronomical Union, 2020-06, Vol.16 (S363), p.276-279</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union</rights><rights>The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3733-7267 ; 0000-0002-1768-618X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S174392132200028X/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Taverna, Roberto</creatorcontrib><creatorcontrib>Turolla, Roberto</creatorcontrib><creatorcontrib>Zane, Silvia</creatorcontrib><creatorcontrib>Suleimanov, Valery</creatorcontrib><creatorcontrib>Potekhin, Alexander Y.</creatorcontrib><title>Polarized emission from strongly magnetized sources</title><title>Proceedings of the International Astronomical Union</title><addtitle>Proc. IAU</addtitle><description>Anomalous X-ray pulsars (AXPs) and Soft gamma repeaters (SGRs) form together a single class of astrophysical sources, commonly associated to magnetars. New-generation X-ray polarimeters will play a key role in assessing the nature of these sources by directly probing the star magnetic field. In the highly magnetized environment radiation is expected to be strongly polarized and such a measure will be easily within reach of IXPE and eXTP. Polarization measurements will eventually confirm the presence of ultra-strong magnetic fields, probing the magnetar scenario. In this work we will discuss theoretical expectations for the polarization signature of AXPs and SGRs and present numerical simulations for the detector response of the polarimeters currently under construction. We will also show how these sources can be used to test vacuum birefringence, a QED effect predicted by Heisemberg and Euler in the Thirties and not experimentally verified as yet.</description><subject>Approximation</subject><subject>Astronomy</subject><subject>Atoms & subatomic particles</subject><subject>Birefringence</subject><subject>Charged particles</subject><subject>Contributed Paper</subject><subject>Generation X</subject><subject>Magnetars</subject><subject>Magnetic fields</subject><subject>Polarimeters</subject><subject>Polarization</subject><subject>Pulsars</subject><subject>Radiation</subject><subject>Repeaters</subject><subject>Simulation</subject><subject>Stars & galaxies</subject><subject>X ray sources</subject><issn>1743-9213</issn><issn>1743-9221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1Lw0AQxRdRsFb_AG8Bz9H5SLLJUYpfUFBQwVvYJJOQkmTrbgvWv97UFj2IpxmG33vzeEqdI1wioL56Rh1xRshEAEDp24GabE9hRoSHPzvysTrxfgEQJSnHE8VPtjOu_ZQqkL71vrVDUDvbB37l7NB0m6A3zSCrb8LbtSvFn6qj2nRezvZzql5vb15m9-H88e5hdj0PSyL9EWYiOom11mVcJcg64YyjOhUyiEUccwVRXYhBNpKRAYIiMWmEGadFrUtDPFUXO9-ls-9r8at8MQYYxpc56RQiBkzikcIdVTrrvZM6X7q2N26TI-TbbvI_3Ywa3mtMX7i2auTX-n_VFyawZSw</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Taverna, Roberto</creator><creator>Turolla, Roberto</creator><creator>Zane, Silvia</creator><creator>Suleimanov, Valery</creator><creator>Potekhin, Alexander Y.</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3733-7267</orcidid><orcidid>https://orcid.org/0000-0002-1768-618X</orcidid></search><sort><creationdate>20200601</creationdate><title>Polarized emission from strongly magnetized sources</title><author>Taverna, Roberto ; Turolla, Roberto ; Zane, Silvia ; Suleimanov, Valery ; Potekhin, Alexander Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c227x-9ee765777c5d613763934f8e2a11b553d04fbea13ae92a020b6a841938bf7ca23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Approximation</topic><topic>Astronomy</topic><topic>Atoms & subatomic particles</topic><topic>Birefringence</topic><topic>Charged particles</topic><topic>Contributed Paper</topic><topic>Generation X</topic><topic>Magnetars</topic><topic>Magnetic fields</topic><topic>Polarimeters</topic><topic>Polarization</topic><topic>Pulsars</topic><topic>Radiation</topic><topic>Repeaters</topic><topic>Simulation</topic><topic>Stars & galaxies</topic><topic>X ray sources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taverna, Roberto</creatorcontrib><creatorcontrib>Turolla, Roberto</creatorcontrib><creatorcontrib>Zane, Silvia</creatorcontrib><creatorcontrib>Suleimanov, Valery</creatorcontrib><creatorcontrib>Potekhin, Alexander Y.</creatorcontrib><collection>Cambridge Journals Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Proceedings of the International Astronomical Union</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taverna, Roberto</au><au>Turolla, Roberto</au><au>Zane, Silvia</au><au>Suleimanov, Valery</au><au>Potekhin, Alexander Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polarized emission from strongly magnetized sources</atitle><jtitle>Proceedings of the International Astronomical Union</jtitle><addtitle>Proc. IAU</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>16</volume><issue>S363</issue><spage>276</spage><epage>279</epage><pages>276-279</pages><issn>1743-9213</issn><eissn>1743-9221</eissn><abstract>Anomalous X-ray pulsars (AXPs) and Soft gamma repeaters (SGRs) form together a single class of astrophysical sources, commonly associated to magnetars. New-generation X-ray polarimeters will play a key role in assessing the nature of these sources by directly probing the star magnetic field. In the highly magnetized environment radiation is expected to be strongly polarized and such a measure will be easily within reach of IXPE and eXTP. Polarization measurements will eventually confirm the presence of ultra-strong magnetic fields, probing the magnetar scenario. In this work we will discuss theoretical expectations for the polarization signature of AXPs and SGRs and present numerical simulations for the detector response of the polarimeters currently under construction. We will also show how these sources can be used to test vacuum birefringence, a QED effect predicted by Heisemberg and Euler in the Thirties and not experimentally verified as yet.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S174392132200028X</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-3733-7267</orcidid><orcidid>https://orcid.org/0000-0002-1768-618X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1743-9213 |
ispartof | Proceedings of the International Astronomical Union, 2020-06, Vol.16 (S363), p.276-279 |
issn | 1743-9213 1743-9221 |
language | eng |
recordid | cdi_proquest_journals_2780430165 |
source | Cambridge University Press Journals Complete |
subjects | Approximation Astronomy Atoms & subatomic particles Birefringence Charged particles Contributed Paper Generation X Magnetars Magnetic fields Polarimeters Polarization Pulsars Radiation Repeaters Simulation Stars & galaxies X ray sources |
title | Polarized emission from strongly magnetized sources |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T01%3A38%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polarized%20emission%20from%20strongly%20magnetized%20sources&rft.jtitle=Proceedings%20of%20the%20International%20Astronomical%20Union&rft.au=Taverna,%20Roberto&rft.date=2020-06-01&rft.volume=16&rft.issue=S363&rft.spage=276&rft.epage=279&rft.pages=276-279&rft.issn=1743-9213&rft.eissn=1743-9221&rft_id=info:doi/10.1017/S174392132200028X&rft_dat=%3Cproquest_cross%3E2780430165%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780430165&rft_id=info:pmid/&rft_cupid=10_1017_S174392132200028X&rfr_iscdi=true |