Generalization of Klain’s theorem to Minkowski symmetrization of compact sets and related topics
We shall prove a convergence result relative to sequences of Minkowski symmetrals of general compact sets. In particular, we investigate the case when this process is induced by sequences of subspaces whose elements belong to a finite family, following the path marked by Klain in Klain (2012, Advanc...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 2023-03, Vol.66 (1), p.124-141 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 141 |
---|---|
container_issue | 1 |
container_start_page | 124 |
container_title | Canadian mathematical bulletin |
container_volume | 66 |
creator | Ulivelli, Jacopo |
description | We shall prove a convergence result relative to sequences of Minkowski symmetrals of general compact sets. In particular, we investigate the case when this process is induced by sequences of subspaces whose elements belong to a finite family, following the path marked by Klain in Klain (2012, Advances in Applied Mathematics 48, 340–353), and the generalizations in Bianchi et al. (2019, Convergence of symmetrization processes, preprint) and Bianchi et al. (2012, Indiana University Mathematics Journal 61, 1695–1710). We prove an analogous result for fiber symmetrization of a specific class of compact sets. The idempotency for symmetrizations of this family of sets is investigated, leading to a simple generalization of a result from Klartag (2004, Geometric and Functional Analysis 14, 1322–1338) regarding the approximation of a ball through a finite number of symmetrizations, and generalizing an approximation result in Fradelizi, Làngi and Zvavitch (2020, Volume of the Minkowski sums of star-shaped sets, preprint). |
doi_str_mv | 10.4153/S0008439521000904 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2780021175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_4153_S0008439521000904</cupid><sourcerecordid>2780021175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-c40444481bdbb5fc18fe35f63324abf5a998f8770cb49caa859e5b1ecb8a9623</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4C3geTXZJN3kKEWrWPFg70uSTTTt7mZNUqSefA1fzycxxYKCOJcZ-P_vH2YAOMXonGJGLh4RQpwSwUqcJ4HoHhhhKiYFLXm1D0Zbudjqh-AoxiVCuGIVGwE1M70JsnVvMjnfQ2_hXStd__n-EWF6Nj6YDiYP712_8q9x5WDcdJ1J4RegfTdInWA0KULZNzCYVibTZG5wOh6DAyvbaE52fQwW11eL6U0xf5jdTi_nhSa4SoWmiObiWDVKMasxt4YwOyGkpFJZJoXgllcV0ooKLSVnwjCFjVZciklJxuDsO3YI_mVtYqqXfh36vLEuK45QifPJ2YW_XTr4GIOx9RBcJ8OmxqjefrL-88nMkB0jOxVc82R-ov-nvgCQanet</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780021175</pqid></control><display><type>article</type><title>Generalization of Klain’s theorem to Minkowski symmetrization of compact sets and related topics</title><source>Cambridge University Press Journals Complete</source><creator>Ulivelli, Jacopo</creator><creatorcontrib>Ulivelli, Jacopo</creatorcontrib><description>We shall prove a convergence result relative to sequences of Minkowski symmetrals of general compact sets. In particular, we investigate the case when this process is induced by sequences of subspaces whose elements belong to a finite family, following the path marked by Klain in Klain (2012, Advances in Applied Mathematics 48, 340–353), and the generalizations in Bianchi et al. (2019, Convergence of symmetrization processes, preprint) and Bianchi et al. (2012, Indiana University Mathematics Journal 61, 1695–1710). We prove an analogous result for fiber symmetrization of a specific class of compact sets. The idempotency for symmetrizations of this family of sets is investigated, leading to a simple generalization of a result from Klartag (2004, Geometric and Functional Analysis 14, 1322–1338) regarding the approximation of a ball through a finite number of symmetrizations, and generalizing an approximation result in Fradelizi, Làngi and Zvavitch (2020, Volume of the Minkowski sums of star-shaped sets, preprint).</description><identifier>ISSN: 0008-4395</identifier><identifier>EISSN: 1496-4287</identifier><identifier>DOI: 10.4153/S0008439521000904</identifier><language>eng</language><publisher>Canada: Canadian Mathematical Society</publisher><subject>Applications of mathematics ; Approximation ; Convergence ; Functional analysis ; Mathematical analysis ; Sequences ; Subspaces</subject><ispartof>Canadian mathematical bulletin, 2023-03, Vol.66 (1), p.124-141</ispartof><rights>Canadian Mathematical Society, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-c40444481bdbb5fc18fe35f63324abf5a998f8770cb49caa859e5b1ecb8a9623</citedby><cites>FETCH-LOGICAL-c317t-c40444481bdbb5fc18fe35f63324abf5a998f8770cb49caa859e5b1ecb8a9623</cites><orcidid>0000-0002-4726-5271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0008439521000904/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Ulivelli, Jacopo</creatorcontrib><title>Generalization of Klain’s theorem to Minkowski symmetrization of compact sets and related topics</title><title>Canadian mathematical bulletin</title><addtitle>Can. Math. Bull</addtitle><description>We shall prove a convergence result relative to sequences of Minkowski symmetrals of general compact sets. In particular, we investigate the case when this process is induced by sequences of subspaces whose elements belong to a finite family, following the path marked by Klain in Klain (2012, Advances in Applied Mathematics 48, 340–353), and the generalizations in Bianchi et al. (2019, Convergence of symmetrization processes, preprint) and Bianchi et al. (2012, Indiana University Mathematics Journal 61, 1695–1710). We prove an analogous result for fiber symmetrization of a specific class of compact sets. The idempotency for symmetrizations of this family of sets is investigated, leading to a simple generalization of a result from Klartag (2004, Geometric and Functional Analysis 14, 1322–1338) regarding the approximation of a ball through a finite number of symmetrizations, and generalizing an approximation result in Fradelizi, Làngi and Zvavitch (2020, Volume of the Minkowski sums of star-shaped sets, preprint).</description><subject>Applications of mathematics</subject><subject>Approximation</subject><subject>Convergence</subject><subject>Functional analysis</subject><subject>Mathematical analysis</subject><subject>Sequences</subject><subject>Subspaces</subject><issn>0008-4395</issn><issn>1496-4287</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMFKAzEQhoMoWKsP4C3geTXZJN3kKEWrWPFg70uSTTTt7mZNUqSefA1fzycxxYKCOJcZ-P_vH2YAOMXonGJGLh4RQpwSwUqcJ4HoHhhhKiYFLXm1D0Zbudjqh-AoxiVCuGIVGwE1M70JsnVvMjnfQ2_hXStd__n-EWF6Nj6YDiYP712_8q9x5WDcdJ1J4RegfTdInWA0KULZNzCYVibTZG5wOh6DAyvbaE52fQwW11eL6U0xf5jdTi_nhSa4SoWmiObiWDVKMasxt4YwOyGkpFJZJoXgllcV0ooKLSVnwjCFjVZciklJxuDsO3YI_mVtYqqXfh36vLEuK45QifPJ2YW_XTr4GIOx9RBcJ8OmxqjefrL-88nMkB0jOxVc82R-ov-nvgCQanet</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Ulivelli, Jacopo</creator><general>Canadian Mathematical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FQ</scope><scope>8FV</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4726-5271</orcidid></search><sort><creationdate>20230301</creationdate><title>Generalization of Klain’s theorem to Minkowski symmetrization of compact sets and related topics</title><author>Ulivelli, Jacopo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-c40444481bdbb5fc18fe35f63324abf5a998f8770cb49caa859e5b1ecb8a9623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of mathematics</topic><topic>Approximation</topic><topic>Convergence</topic><topic>Functional analysis</topic><topic>Mathematical analysis</topic><topic>Sequences</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ulivelli, Jacopo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Canadian Business & Current Affairs Database</collection><collection>Canadian Business & Current Affairs Database (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Canadian mathematical bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ulivelli, Jacopo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalization of Klain’s theorem to Minkowski symmetrization of compact sets and related topics</atitle><jtitle>Canadian mathematical bulletin</jtitle><addtitle>Can. Math. Bull</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>66</volume><issue>1</issue><spage>124</spage><epage>141</epage><pages>124-141</pages><issn>0008-4395</issn><eissn>1496-4287</eissn><abstract>We shall prove a convergence result relative to sequences of Minkowski symmetrals of general compact sets. In particular, we investigate the case when this process is induced by sequences of subspaces whose elements belong to a finite family, following the path marked by Klain in Klain (2012, Advances in Applied Mathematics 48, 340–353), and the generalizations in Bianchi et al. (2019, Convergence of symmetrization processes, preprint) and Bianchi et al. (2012, Indiana University Mathematics Journal 61, 1695–1710). We prove an analogous result for fiber symmetrization of a specific class of compact sets. The idempotency for symmetrizations of this family of sets is investigated, leading to a simple generalization of a result from Klartag (2004, Geometric and Functional Analysis 14, 1322–1338) regarding the approximation of a ball through a finite number of symmetrizations, and generalizing an approximation result in Fradelizi, Làngi and Zvavitch (2020, Volume of the Minkowski sums of star-shaped sets, preprint).</abstract><cop>Canada</cop><pub>Canadian Mathematical Society</pub><doi>10.4153/S0008439521000904</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4726-5271</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-4395 |
ispartof | Canadian mathematical bulletin, 2023-03, Vol.66 (1), p.124-141 |
issn | 0008-4395 1496-4287 |
language | eng |
recordid | cdi_proquest_journals_2780021175 |
source | Cambridge University Press Journals Complete |
subjects | Applications of mathematics Approximation Convergence Functional analysis Mathematical analysis Sequences Subspaces |
title | Generalization of Klain’s theorem to Minkowski symmetrization of compact sets and related topics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalization%20of%20Klain%E2%80%99s%20theorem%20to%20Minkowski%20symmetrization%20of%20compact%20sets%20and%20related%20topics&rft.jtitle=Canadian%20mathematical%20bulletin&rft.au=Ulivelli,%20Jacopo&rft.date=2023-03-01&rft.volume=66&rft.issue=1&rft.spage=124&rft.epage=141&rft.pages=124-141&rft.issn=0008-4395&rft.eissn=1496-4287&rft_id=info:doi/10.4153/S0008439521000904&rft_dat=%3Cproquest_cross%3E2780021175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780021175&rft_id=info:pmid/&rft_cupid=10_4153_S0008439521000904&rfr_iscdi=true |