Generalization of Klain’s theorem to Minkowski symmetrization of compact sets and related topics

We shall prove a convergence result relative to sequences of Minkowski symmetrals of general compact sets. In particular, we investigate the case when this process is induced by sequences of subspaces whose elements belong to a finite family, following the path marked by Klain in Klain (2012, Advanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian mathematical bulletin 2023-03, Vol.66 (1), p.124-141
1. Verfasser: Ulivelli, Jacopo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 141
container_issue 1
container_start_page 124
container_title Canadian mathematical bulletin
container_volume 66
creator Ulivelli, Jacopo
description We shall prove a convergence result relative to sequences of Minkowski symmetrals of general compact sets. In particular, we investigate the case when this process is induced by sequences of subspaces whose elements belong to a finite family, following the path marked by Klain in Klain (2012, Advances in Applied Mathematics 48, 340–353), and the generalizations in Bianchi et al. (2019, Convergence of symmetrization processes, preprint) and Bianchi et al. (2012, Indiana University Mathematics Journal 61, 1695–1710). We prove an analogous result for fiber symmetrization of a specific class of compact sets. The idempotency for symmetrizations of this family of sets is investigated, leading to a simple generalization of a result from Klartag (2004, Geometric and Functional Analysis 14, 1322–1338) regarding the approximation of a ball through a finite number of symmetrizations, and generalizing an approximation result in Fradelizi, Làngi and Zvavitch (2020, Volume of the Minkowski sums of star-shaped sets, preprint).
doi_str_mv 10.4153/S0008439521000904
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2780021175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_4153_S0008439521000904</cupid><sourcerecordid>2780021175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-c40444481bdbb5fc18fe35f63324abf5a998f8770cb49caa859e5b1ecb8a9623</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4C3geTXZJN3kKEWrWPFg70uSTTTt7mZNUqSefA1fzycxxYKCOJcZ-P_vH2YAOMXonGJGLh4RQpwSwUqcJ4HoHhhhKiYFLXm1D0Zbudjqh-AoxiVCuGIVGwE1M70JsnVvMjnfQ2_hXStd__n-EWF6Nj6YDiYP712_8q9x5WDcdJ1J4RegfTdInWA0KULZNzCYVibTZG5wOh6DAyvbaE52fQwW11eL6U0xf5jdTi_nhSa4SoWmiObiWDVKMasxt4YwOyGkpFJZJoXgllcV0ooKLSVnwjCFjVZciklJxuDsO3YI_mVtYqqXfh36vLEuK45QifPJ2YW_XTr4GIOx9RBcJ8OmxqjefrL-88nMkB0jOxVc82R-ov-nvgCQanet</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780021175</pqid></control><display><type>article</type><title>Generalization of Klain’s theorem to Minkowski symmetrization of compact sets and related topics</title><source>Cambridge University Press Journals Complete</source><creator>Ulivelli, Jacopo</creator><creatorcontrib>Ulivelli, Jacopo</creatorcontrib><description>We shall prove a convergence result relative to sequences of Minkowski symmetrals of general compact sets. In particular, we investigate the case when this process is induced by sequences of subspaces whose elements belong to a finite family, following the path marked by Klain in Klain (2012, Advances in Applied Mathematics 48, 340–353), and the generalizations in Bianchi et al. (2019, Convergence of symmetrization processes, preprint) and Bianchi et al. (2012, Indiana University Mathematics Journal 61, 1695–1710). We prove an analogous result for fiber symmetrization of a specific class of compact sets. The idempotency for symmetrizations of this family of sets is investigated, leading to a simple generalization of a result from Klartag (2004, Geometric and Functional Analysis 14, 1322–1338) regarding the approximation of a ball through a finite number of symmetrizations, and generalizing an approximation result in Fradelizi, Làngi and Zvavitch (2020, Volume of the Minkowski sums of star-shaped sets, preprint).</description><identifier>ISSN: 0008-4395</identifier><identifier>EISSN: 1496-4287</identifier><identifier>DOI: 10.4153/S0008439521000904</identifier><language>eng</language><publisher>Canada: Canadian Mathematical Society</publisher><subject>Applications of mathematics ; Approximation ; Convergence ; Functional analysis ; Mathematical analysis ; Sequences ; Subspaces</subject><ispartof>Canadian mathematical bulletin, 2023-03, Vol.66 (1), p.124-141</ispartof><rights>Canadian Mathematical Society, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-c40444481bdbb5fc18fe35f63324abf5a998f8770cb49caa859e5b1ecb8a9623</citedby><cites>FETCH-LOGICAL-c317t-c40444481bdbb5fc18fe35f63324abf5a998f8770cb49caa859e5b1ecb8a9623</cites><orcidid>0000-0002-4726-5271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0008439521000904/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>Ulivelli, Jacopo</creatorcontrib><title>Generalization of Klain’s theorem to Minkowski symmetrization of compact sets and related topics</title><title>Canadian mathematical bulletin</title><addtitle>Can. Math. Bull</addtitle><description>We shall prove a convergence result relative to sequences of Minkowski symmetrals of general compact sets. In particular, we investigate the case when this process is induced by sequences of subspaces whose elements belong to a finite family, following the path marked by Klain in Klain (2012, Advances in Applied Mathematics 48, 340–353), and the generalizations in Bianchi et al. (2019, Convergence of symmetrization processes, preprint) and Bianchi et al. (2012, Indiana University Mathematics Journal 61, 1695–1710). We prove an analogous result for fiber symmetrization of a specific class of compact sets. The idempotency for symmetrizations of this family of sets is investigated, leading to a simple generalization of a result from Klartag (2004, Geometric and Functional Analysis 14, 1322–1338) regarding the approximation of a ball through a finite number of symmetrizations, and generalizing an approximation result in Fradelizi, Làngi and Zvavitch (2020, Volume of the Minkowski sums of star-shaped sets, preprint).</description><subject>Applications of mathematics</subject><subject>Approximation</subject><subject>Convergence</subject><subject>Functional analysis</subject><subject>Mathematical analysis</subject><subject>Sequences</subject><subject>Subspaces</subject><issn>0008-4395</issn><issn>1496-4287</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMFKAzEQhoMoWKsP4C3geTXZJN3kKEWrWPFg70uSTTTt7mZNUqSefA1fzycxxYKCOJcZ-P_vH2YAOMXonGJGLh4RQpwSwUqcJ4HoHhhhKiYFLXm1D0Zbudjqh-AoxiVCuGIVGwE1M70JsnVvMjnfQ2_hXStd__n-EWF6Nj6YDiYP712_8q9x5WDcdJ1J4RegfTdInWA0KULZNzCYVibTZG5wOh6DAyvbaE52fQwW11eL6U0xf5jdTi_nhSa4SoWmiObiWDVKMasxt4YwOyGkpFJZJoXgllcV0ooKLSVnwjCFjVZciklJxuDsO3YI_mVtYqqXfh36vLEuK45QifPJ2YW_XTr4GIOx9RBcJ8OmxqjefrL-88nMkB0jOxVc82R-ov-nvgCQanet</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Ulivelli, Jacopo</creator><general>Canadian Mathematical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FQ</scope><scope>8FV</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4726-5271</orcidid></search><sort><creationdate>20230301</creationdate><title>Generalization of Klain’s theorem to Minkowski symmetrization of compact sets and related topics</title><author>Ulivelli, Jacopo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-c40444481bdbb5fc18fe35f63324abf5a998f8770cb49caa859e5b1ecb8a9623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of mathematics</topic><topic>Approximation</topic><topic>Convergence</topic><topic>Functional analysis</topic><topic>Mathematical analysis</topic><topic>Sequences</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ulivelli, Jacopo</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Canadian Business &amp; Current Affairs Database</collection><collection>Canadian Business &amp; Current Affairs Database (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Canadian mathematical bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ulivelli, Jacopo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalization of Klain’s theorem to Minkowski symmetrization of compact sets and related topics</atitle><jtitle>Canadian mathematical bulletin</jtitle><addtitle>Can. Math. Bull</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>66</volume><issue>1</issue><spage>124</spage><epage>141</epage><pages>124-141</pages><issn>0008-4395</issn><eissn>1496-4287</eissn><abstract>We shall prove a convergence result relative to sequences of Minkowski symmetrals of general compact sets. In particular, we investigate the case when this process is induced by sequences of subspaces whose elements belong to a finite family, following the path marked by Klain in Klain (2012, Advances in Applied Mathematics 48, 340–353), and the generalizations in Bianchi et al. (2019, Convergence of symmetrization processes, preprint) and Bianchi et al. (2012, Indiana University Mathematics Journal 61, 1695–1710). We prove an analogous result for fiber symmetrization of a specific class of compact sets. The idempotency for symmetrizations of this family of sets is investigated, leading to a simple generalization of a result from Klartag (2004, Geometric and Functional Analysis 14, 1322–1338) regarding the approximation of a ball through a finite number of symmetrizations, and generalizing an approximation result in Fradelizi, Làngi and Zvavitch (2020, Volume of the Minkowski sums of star-shaped sets, preprint).</abstract><cop>Canada</cop><pub>Canadian Mathematical Society</pub><doi>10.4153/S0008439521000904</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4726-5271</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0008-4395
ispartof Canadian mathematical bulletin, 2023-03, Vol.66 (1), p.124-141
issn 0008-4395
1496-4287
language eng
recordid cdi_proquest_journals_2780021175
source Cambridge University Press Journals Complete
subjects Applications of mathematics
Approximation
Convergence
Functional analysis
Mathematical analysis
Sequences
Subspaces
title Generalization of Klain’s theorem to Minkowski symmetrization of compact sets and related topics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A33%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalization%20of%20Klain%E2%80%99s%20theorem%20to%20Minkowski%20symmetrization%20of%20compact%20sets%20and%20related%20topics&rft.jtitle=Canadian%20mathematical%20bulletin&rft.au=Ulivelli,%20Jacopo&rft.date=2023-03-01&rft.volume=66&rft.issue=1&rft.spage=124&rft.epage=141&rft.pages=124-141&rft.issn=0008-4395&rft.eissn=1496-4287&rft_id=info:doi/10.4153/S0008439521000904&rft_dat=%3Cproquest_cross%3E2780021175%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780021175&rft_id=info:pmid/&rft_cupid=10_4153_S0008439521000904&rfr_iscdi=true