A real-time remote surveillance system for fruit flies of economic importance: sensitivity and image analysis

Timely detection of an invasion event, or a pest outbreak, is an extremely challenging operation of major importance for implementing management action toward eradication and/or containment. Fruit flies—FF—(Diptera: Tephritidae) comprise important invasive and quarantine species that threaten the wo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pest science 2023-03, Vol.96 (2), p.611-622
Hauptverfasser: Diller, Yoshua, Shamsian, Aviv, Shaked, Ben, Altman, Yam, Danziger, Bat-Chen, Manrakhan, Aruna, Serfontein, Leani, Bali, Elma, Wernicke, Matthias, Egartner, Alois, Colacci, Marco, Sciarretta, Andrea, Chechik, Gal, Alchanatis, Victor, Papadopoulos, Nikos T., Nestel, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 622
container_issue 2
container_start_page 611
container_title Journal of pest science
container_volume 96
creator Diller, Yoshua
Shamsian, Aviv
Shaked, Ben
Altman, Yam
Danziger, Bat-Chen
Manrakhan, Aruna
Serfontein, Leani
Bali, Elma
Wernicke, Matthias
Egartner, Alois
Colacci, Marco
Sciarretta, Andrea
Chechik, Gal
Alchanatis, Victor
Papadopoulos, Nikos T.
Nestel, David
description Timely detection of an invasion event, or a pest outbreak, is an extremely challenging operation of major importance for implementing management action toward eradication and/or containment. Fruit flies—FF—(Diptera: Tephritidae) comprise important invasive and quarantine species that threaten the world fruit and vegetables production. The current manuscript introduces a recently developed McPhail-type electronic trap (e-trap) and provides data on its field performance to surveil three major invasive FF ( Ceratitis capitata , Bactrocera dorsalis and B. zonata ). Using FF male lures, the e-trap attracts the flies and retains them on a sticky surface placed in the internal part of the trap. The e-trap captures frames of the trapped adults and automatically uploads the images to the remote server for identification conducted on a novel algorithm involving deep learning. Both the e-trap and the developed code were tested in the field in Greece, Austria, Italy, South Africa and Israel. The FF classification code was initially trained using a machine-learning algorithm and FF images derived from laboratory colonies of two of the species ( C. capitata and B. zonata ). Field tests were then conducted to investigate the electronic, communication and attractive performance of the e-trap, and the model accuracy to classify FFs. Our results demonstrated a relatively good communication, electronic performance and trapping efficacy of the e-trap. The classification model provided average precision results (93–95%) for the three target FFs from images uploaded remotely from e-traps deployed in field conditions. The developed and field tested e-trap system complies with the suggested attributes required for an advanced camera-based smart-trap.
doi_str_mv 10.1007/s10340-022-01528-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2779690922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779690922</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-7d3431c94ba6d34f22833f4889dd33d3fc664f02c03fe617a158854ac7c6d0aa3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mzwI3ESblXFS6rEBc6WcezKVRIXr1M1_x6XIrhx2lntzGr0IXTN6C2jtLoDRkVBCeWcUFbymuxP0IxJxklRSXn6q8v6HF0AbCjlDRX1DPULHK3uSPK9zaoPyWIY4876rtODycsEyfbYhYhdHH3CrvMWcHDYmjCE3hvs-22I6eC-x2AH8MnvfJqwHtp802uble4m8HCJzpzuwF79zDl6f3x4Wz6T1evTy3KxIkZIkUjVikIw0xQfWmbpOK-FcEVdN20rRCuckbJwlBsqnJWs0qys67LQpjKypVqLObo5_t3G8DlaSGoTxphLgOJV1ciGNpxnFz-6TAwA0Tq1jblvnBSj6oBVHbGqjFV9Y1X7HBLHEGTzsLbx7_U_qS_Q1HzH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779690922</pqid></control><display><type>article</type><title>A real-time remote surveillance system for fruit flies of economic importance: sensitivity and image analysis</title><source>Springer journals</source><creator>Diller, Yoshua ; Shamsian, Aviv ; Shaked, Ben ; Altman, Yam ; Danziger, Bat-Chen ; Manrakhan, Aruna ; Serfontein, Leani ; Bali, Elma ; Wernicke, Matthias ; Egartner, Alois ; Colacci, Marco ; Sciarretta, Andrea ; Chechik, Gal ; Alchanatis, Victor ; Papadopoulos, Nikos T. ; Nestel, David</creator><creatorcontrib>Diller, Yoshua ; Shamsian, Aviv ; Shaked, Ben ; Altman, Yam ; Danziger, Bat-Chen ; Manrakhan, Aruna ; Serfontein, Leani ; Bali, Elma ; Wernicke, Matthias ; Egartner, Alois ; Colacci, Marco ; Sciarretta, Andrea ; Chechik, Gal ; Alchanatis, Victor ; Papadopoulos, Nikos T. ; Nestel, David</creatorcontrib><description>Timely detection of an invasion event, or a pest outbreak, is an extremely challenging operation of major importance for implementing management action toward eradication and/or containment. Fruit flies—FF—(Diptera: Tephritidae) comprise important invasive and quarantine species that threaten the world fruit and vegetables production. The current manuscript introduces a recently developed McPhail-type electronic trap (e-trap) and provides data on its field performance to surveil three major invasive FF ( Ceratitis capitata , Bactrocera dorsalis and B. zonata ). Using FF male lures, the e-trap attracts the flies and retains them on a sticky surface placed in the internal part of the trap. The e-trap captures frames of the trapped adults and automatically uploads the images to the remote server for identification conducted on a novel algorithm involving deep learning. Both the e-trap and the developed code were tested in the field in Greece, Austria, Italy, South Africa and Israel. The FF classification code was initially trained using a machine-learning algorithm and FF images derived from laboratory colonies of two of the species ( C. capitata and B. zonata ). Field tests were then conducted to investigate the electronic, communication and attractive performance of the e-trap, and the model accuracy to classify FFs. Our results demonstrated a relatively good communication, electronic performance and trapping efficacy of the e-trap. The classification model provided average precision results (93–95%) for the three target FFs from images uploaded remotely from e-traps deployed in field conditions. The developed and field tested e-trap system complies with the suggested attributes required for an advanced camera-based smart-trap.</description><identifier>ISSN: 1612-4758</identifier><identifier>EISSN: 1612-4766</identifier><identifier>DOI: 10.1007/s10340-022-01528-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural research ; Agriculture ; Algorithms ; Automation ; Biomedical and Life Sciences ; Classification ; Decision making ; Deep learning ; Ecology ; Economic analysis ; Economic importance ; Entomology ; Field tests ; Forestry ; Fruit flies ; Fruits ; Image analysis ; Image processing ; Invasive species ; Laboratories ; Life Sciences ; Machine learning ; Model accuracy ; Original Paper ; Pest outbreaks ; Plant Pathology ; Plant Sciences ; Sensors ; Surveillance ; Surveillance systems ; Zoology</subject><ispartof>Journal of pest science, 2023-03, Vol.96 (2), p.611-622</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-7d3431c94ba6d34f22833f4889dd33d3fc664f02c03fe617a158854ac7c6d0aa3</citedby><cites>FETCH-LOGICAL-c363t-7d3431c94ba6d34f22833f4889dd33d3fc664f02c03fe617a158854ac7c6d0aa3</cites><orcidid>0000-0003-4322-4648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10340-022-01528-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10340-022-01528-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Diller, Yoshua</creatorcontrib><creatorcontrib>Shamsian, Aviv</creatorcontrib><creatorcontrib>Shaked, Ben</creatorcontrib><creatorcontrib>Altman, Yam</creatorcontrib><creatorcontrib>Danziger, Bat-Chen</creatorcontrib><creatorcontrib>Manrakhan, Aruna</creatorcontrib><creatorcontrib>Serfontein, Leani</creatorcontrib><creatorcontrib>Bali, Elma</creatorcontrib><creatorcontrib>Wernicke, Matthias</creatorcontrib><creatorcontrib>Egartner, Alois</creatorcontrib><creatorcontrib>Colacci, Marco</creatorcontrib><creatorcontrib>Sciarretta, Andrea</creatorcontrib><creatorcontrib>Chechik, Gal</creatorcontrib><creatorcontrib>Alchanatis, Victor</creatorcontrib><creatorcontrib>Papadopoulos, Nikos T.</creatorcontrib><creatorcontrib>Nestel, David</creatorcontrib><title>A real-time remote surveillance system for fruit flies of economic importance: sensitivity and image analysis</title><title>Journal of pest science</title><addtitle>J Pest Sci</addtitle><description>Timely detection of an invasion event, or a pest outbreak, is an extremely challenging operation of major importance for implementing management action toward eradication and/or containment. Fruit flies—FF—(Diptera: Tephritidae) comprise important invasive and quarantine species that threaten the world fruit and vegetables production. The current manuscript introduces a recently developed McPhail-type electronic trap (e-trap) and provides data on its field performance to surveil three major invasive FF ( Ceratitis capitata , Bactrocera dorsalis and B. zonata ). Using FF male lures, the e-trap attracts the flies and retains them on a sticky surface placed in the internal part of the trap. The e-trap captures frames of the trapped adults and automatically uploads the images to the remote server for identification conducted on a novel algorithm involving deep learning. Both the e-trap and the developed code were tested in the field in Greece, Austria, Italy, South Africa and Israel. The FF classification code was initially trained using a machine-learning algorithm and FF images derived from laboratory colonies of two of the species ( C. capitata and B. zonata ). Field tests were then conducted to investigate the electronic, communication and attractive performance of the e-trap, and the model accuracy to classify FFs. Our results demonstrated a relatively good communication, electronic performance and trapping efficacy of the e-trap. The classification model provided average precision results (93–95%) for the three target FFs from images uploaded remotely from e-traps deployed in field conditions. The developed and field tested e-trap system complies with the suggested attributes required for an advanced camera-based smart-trap.</description><subject>Agricultural research</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Automation</subject><subject>Biomedical and Life Sciences</subject><subject>Classification</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Ecology</subject><subject>Economic analysis</subject><subject>Economic importance</subject><subject>Entomology</subject><subject>Field tests</subject><subject>Forestry</subject><subject>Fruit flies</subject><subject>Fruits</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Invasive species</subject><subject>Laboratories</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Original Paper</subject><subject>Pest outbreaks</subject><subject>Plant Pathology</subject><subject>Plant Sciences</subject><subject>Sensors</subject><subject>Surveillance</subject><subject>Surveillance systems</subject><subject>Zoology</subject><issn>1612-4758</issn><issn>1612-4766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mzwI3ESblXFS6rEBc6WcezKVRIXr1M1_x6XIrhx2lntzGr0IXTN6C2jtLoDRkVBCeWcUFbymuxP0IxJxklRSXn6q8v6HF0AbCjlDRX1DPULHK3uSPK9zaoPyWIY4876rtODycsEyfbYhYhdHH3CrvMWcHDYmjCE3hvs-22I6eC-x2AH8MnvfJqwHtp802uble4m8HCJzpzuwF79zDl6f3x4Wz6T1evTy3KxIkZIkUjVikIw0xQfWmbpOK-FcEVdN20rRCuckbJwlBsqnJWs0qys67LQpjKypVqLObo5_t3G8DlaSGoTxphLgOJV1ciGNpxnFz-6TAwA0Tq1jblvnBSj6oBVHbGqjFV9Y1X7HBLHEGTzsLbx7_U_qS_Q1HzH</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Diller, Yoshua</creator><creator>Shamsian, Aviv</creator><creator>Shaked, Ben</creator><creator>Altman, Yam</creator><creator>Danziger, Bat-Chen</creator><creator>Manrakhan, Aruna</creator><creator>Serfontein, Leani</creator><creator>Bali, Elma</creator><creator>Wernicke, Matthias</creator><creator>Egartner, Alois</creator><creator>Colacci, Marco</creator><creator>Sciarretta, Andrea</creator><creator>Chechik, Gal</creator><creator>Alchanatis, Victor</creator><creator>Papadopoulos, Nikos T.</creator><creator>Nestel, David</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-4322-4648</orcidid></search><sort><creationdate>20230301</creationdate><title>A real-time remote surveillance system for fruit flies of economic importance: sensitivity and image analysis</title><author>Diller, Yoshua ; Shamsian, Aviv ; Shaked, Ben ; Altman, Yam ; Danziger, Bat-Chen ; Manrakhan, Aruna ; Serfontein, Leani ; Bali, Elma ; Wernicke, Matthias ; Egartner, Alois ; Colacci, Marco ; Sciarretta, Andrea ; Chechik, Gal ; Alchanatis, Victor ; Papadopoulos, Nikos T. ; Nestel, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-7d3431c94ba6d34f22833f4889dd33d3fc664f02c03fe617a158854ac7c6d0aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agricultural research</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Automation</topic><topic>Biomedical and Life Sciences</topic><topic>Classification</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Ecology</topic><topic>Economic analysis</topic><topic>Economic importance</topic><topic>Entomology</topic><topic>Field tests</topic><topic>Forestry</topic><topic>Fruit flies</topic><topic>Fruits</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Invasive species</topic><topic>Laboratories</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Original Paper</topic><topic>Pest outbreaks</topic><topic>Plant Pathology</topic><topic>Plant Sciences</topic><topic>Sensors</topic><topic>Surveillance</topic><topic>Surveillance systems</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Diller, Yoshua</creatorcontrib><creatorcontrib>Shamsian, Aviv</creatorcontrib><creatorcontrib>Shaked, Ben</creatorcontrib><creatorcontrib>Altman, Yam</creatorcontrib><creatorcontrib>Danziger, Bat-Chen</creatorcontrib><creatorcontrib>Manrakhan, Aruna</creatorcontrib><creatorcontrib>Serfontein, Leani</creatorcontrib><creatorcontrib>Bali, Elma</creatorcontrib><creatorcontrib>Wernicke, Matthias</creatorcontrib><creatorcontrib>Egartner, Alois</creatorcontrib><creatorcontrib>Colacci, Marco</creatorcontrib><creatorcontrib>Sciarretta, Andrea</creatorcontrib><creatorcontrib>Chechik, Gal</creatorcontrib><creatorcontrib>Alchanatis, Victor</creatorcontrib><creatorcontrib>Papadopoulos, Nikos T.</creatorcontrib><creatorcontrib>Nestel, David</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Agriculture Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of pest science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Diller, Yoshua</au><au>Shamsian, Aviv</au><au>Shaked, Ben</au><au>Altman, Yam</au><au>Danziger, Bat-Chen</au><au>Manrakhan, Aruna</au><au>Serfontein, Leani</au><au>Bali, Elma</au><au>Wernicke, Matthias</au><au>Egartner, Alois</au><au>Colacci, Marco</au><au>Sciarretta, Andrea</au><au>Chechik, Gal</au><au>Alchanatis, Victor</au><au>Papadopoulos, Nikos T.</au><au>Nestel, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A real-time remote surveillance system for fruit flies of economic importance: sensitivity and image analysis</atitle><jtitle>Journal of pest science</jtitle><stitle>J Pest Sci</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>96</volume><issue>2</issue><spage>611</spage><epage>622</epage><pages>611-622</pages><issn>1612-4758</issn><eissn>1612-4766</eissn><abstract>Timely detection of an invasion event, or a pest outbreak, is an extremely challenging operation of major importance for implementing management action toward eradication and/or containment. Fruit flies—FF—(Diptera: Tephritidae) comprise important invasive and quarantine species that threaten the world fruit and vegetables production. The current manuscript introduces a recently developed McPhail-type electronic trap (e-trap) and provides data on its field performance to surveil three major invasive FF ( Ceratitis capitata , Bactrocera dorsalis and B. zonata ). Using FF male lures, the e-trap attracts the flies and retains them on a sticky surface placed in the internal part of the trap. The e-trap captures frames of the trapped adults and automatically uploads the images to the remote server for identification conducted on a novel algorithm involving deep learning. Both the e-trap and the developed code were tested in the field in Greece, Austria, Italy, South Africa and Israel. The FF classification code was initially trained using a machine-learning algorithm and FF images derived from laboratory colonies of two of the species ( C. capitata and B. zonata ). Field tests were then conducted to investigate the electronic, communication and attractive performance of the e-trap, and the model accuracy to classify FFs. Our results demonstrated a relatively good communication, electronic performance and trapping efficacy of the e-trap. The classification model provided average precision results (93–95%) for the three target FFs from images uploaded remotely from e-traps deployed in field conditions. The developed and field tested e-trap system complies with the suggested attributes required for an advanced camera-based smart-trap.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10340-022-01528-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4322-4648</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1612-4758
ispartof Journal of pest science, 2023-03, Vol.96 (2), p.611-622
issn 1612-4758
1612-4766
language eng
recordid cdi_proquest_journals_2779690922
source Springer journals
subjects Agricultural research
Agriculture
Algorithms
Automation
Biomedical and Life Sciences
Classification
Decision making
Deep learning
Ecology
Economic analysis
Economic importance
Entomology
Field tests
Forestry
Fruit flies
Fruits
Image analysis
Image processing
Invasive species
Laboratories
Life Sciences
Machine learning
Model accuracy
Original Paper
Pest outbreaks
Plant Pathology
Plant Sciences
Sensors
Surveillance
Surveillance systems
Zoology
title A real-time remote surveillance system for fruit flies of economic importance: sensitivity and image analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A29%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20real-time%20remote%20surveillance%20system%20for%20fruit%20flies%20of%20economic%20importance:%20sensitivity%20and%20image%20analysis&rft.jtitle=Journal%20of%20pest%20science&rft.au=Diller,%20Yoshua&rft.date=2023-03-01&rft.volume=96&rft.issue=2&rft.spage=611&rft.epage=622&rft.pages=611-622&rft.issn=1612-4758&rft.eissn=1612-4766&rft_id=info:doi/10.1007/s10340-022-01528-x&rft_dat=%3Cproquest_cross%3E2779690922%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779690922&rft_id=info:pmid/&rfr_iscdi=true