Effect of Precursor Gas on Growth Temperature and Electrical Conduction of Carbon Nanowalls in Microwave Plasma-Enhanced Chemical Vapor Deposition

Moderate-pressure microwave plasmas are used to prepare nitrogen-incorporated carbon nanowalls (CNWs) by chemical vapor deposition using acetylene and methane as precursor gases. The growth temperature range for acetylene is shown to be totally lower than that (>1000 °C) for methane, which is att...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on plasma science 2023-02, Vol.51 (2), p.298-302
Hauptverfasser: Huang, Lei, Ikematsu, Hiroto, Kato, Yoshimine, Teii, Kungen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 302
container_issue 2
container_start_page 298
container_title IEEE transactions on plasma science
container_volume 51
creator Huang, Lei
Ikematsu, Hiroto
Kato, Yoshimine
Teii, Kungen
description Moderate-pressure microwave plasmas are used to prepare nitrogen-incorporated carbon nanowalls (CNWs) by chemical vapor deposition using acetylene and methane as precursor gases. The growth temperature range for acetylene is shown to be totally lower than that (>1000 °C) for methane, which is attributed to the difference in degree of hydrogenation of radical species in the two plasmas. The structural order and cluster size of sp2 carbon phase in CNWs characterized by the Raman spectroscopy increase initially and, then, decrease with temperature in each temperature range, showing the same trend as the inverse of the sheet resistance of CNWs. The results indicate that the carrier transport in CNWs depends exclusively on the microstructure of sp2 carbon phase, despite a large difference in the growth temperature range depending on the precursor gas.
doi_str_mv 10.1109/TPS.2022.3204458
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2779674376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9996368</ieee_id><sourcerecordid>2779674376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c174t-abd89d899d20c61e595c4794efdadabb6e53304b52e7f94b82e3c60f59bf7a963</originalsourceid><addsrcrecordid>eNo9kE9r20AQxZfSQty090AvCznL3X_Sao9BcdyCmxji9CpGq1ksI2uVXamhXyOfOOs6FAZmDu_9HvMIueJsyTkz33fbx6VgQiylYErl5Qey4EaazEidfyQLxozMZMnlBfkc44ExrnImFuR15RzaiXpHtwHtHKIPdA2R-oGug3-Z9nSHxxEDTHNACkNLV30yhM5CTys_tLOduiROgApCk657GPwL9H2k3UB_dTZR4A_SbQ_xCNlq2MNgsaXVHo__IL9hTJm3OPrYnVBfyCcHfcSv7_uSPN2tdtWPbPOw_lndbDLLtZoyaNrSpDGtYLbgmJvcKm0UuhZaaJoCcymZanKB2hnVlAKlLZjLTeM0mEJekuszdwz-ecY41Qc_hyFF1kJrU2gl9UnFzqr0R4wBXT2G7gjhb81ZfWq-Ts3Xp-br9-aT5dvZ0iHif7kxKbMo5RuV0IHF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779674376</pqid></control><display><type>article</type><title>Effect of Precursor Gas on Growth Temperature and Electrical Conduction of Carbon Nanowalls in Microwave Plasma-Enhanced Chemical Vapor Deposition</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, Lei ; Ikematsu, Hiroto ; Kato, Yoshimine ; Teii, Kungen</creator><creatorcontrib>Huang, Lei ; Ikematsu, Hiroto ; Kato, Yoshimine ; Teii, Kungen</creatorcontrib><description>Moderate-pressure microwave plasmas are used to prepare nitrogen-incorporated carbon nanowalls (CNWs) by chemical vapor deposition using acetylene and methane as precursor gases. The growth temperature range for acetylene is shown to be totally lower than that (&gt;1000 °C) for methane, which is attributed to the difference in degree of hydrogenation of radical species in the two plasmas. The structural order and cluster size of sp2 carbon phase in CNWs characterized by the Raman spectroscopy increase initially and, then, decrease with temperature in each temperature range, showing the same trend as the inverse of the sheet resistance of CNWs. The results indicate that the carrier transport in CNWs depends exclusively on the microstructure of sp2 carbon phase, despite a large difference in the growth temperature range depending on the precursor gas.</description><identifier>ISSN: 0093-3813</identifier><identifier>EISSN: 1939-9375</identifier><identifier>DOI: 10.1109/TPS.2022.3204458</identifier><identifier>CODEN: ITPSBD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amorphous carbon ; Carbon ; Carrier transport ; chemical vapor deposition (CVD) ; Conduction cooling ; Electrical conduction ; electronic transport ; Methane ; microwave ; Microwave plasmas ; Plasma enhanced chemical vapor deposition ; Plasma temperature ; Plasmas ; Precursors ; Raman spectroscopy ; Substrates ; Temperature distribution ; Temperature measurement ; vertical graphene</subject><ispartof>IEEE transactions on plasma science, 2023-02, Vol.51 (2), p.298-302</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c174t-abd89d899d20c61e595c4794efdadabb6e53304b52e7f94b82e3c60f59bf7a963</cites><orcidid>0000-0001-6804-0285 ; 0000-0003-4090-5376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9996368$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9996368$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Ikematsu, Hiroto</creatorcontrib><creatorcontrib>Kato, Yoshimine</creatorcontrib><creatorcontrib>Teii, Kungen</creatorcontrib><title>Effect of Precursor Gas on Growth Temperature and Electrical Conduction of Carbon Nanowalls in Microwave Plasma-Enhanced Chemical Vapor Deposition</title><title>IEEE transactions on plasma science</title><addtitle>TPS</addtitle><description>Moderate-pressure microwave plasmas are used to prepare nitrogen-incorporated carbon nanowalls (CNWs) by chemical vapor deposition using acetylene and methane as precursor gases. The growth temperature range for acetylene is shown to be totally lower than that (&gt;1000 °C) for methane, which is attributed to the difference in degree of hydrogenation of radical species in the two plasmas. The structural order and cluster size of sp2 carbon phase in CNWs characterized by the Raman spectroscopy increase initially and, then, decrease with temperature in each temperature range, showing the same trend as the inverse of the sheet resistance of CNWs. The results indicate that the carrier transport in CNWs depends exclusively on the microstructure of sp2 carbon phase, despite a large difference in the growth temperature range depending on the precursor gas.</description><subject>Amorphous carbon</subject><subject>Carbon</subject><subject>Carrier transport</subject><subject>chemical vapor deposition (CVD)</subject><subject>Conduction cooling</subject><subject>Electrical conduction</subject><subject>electronic transport</subject><subject>Methane</subject><subject>microwave</subject><subject>Microwave plasmas</subject><subject>Plasma enhanced chemical vapor deposition</subject><subject>Plasma temperature</subject><subject>Plasmas</subject><subject>Precursors</subject><subject>Raman spectroscopy</subject><subject>Substrates</subject><subject>Temperature distribution</subject><subject>Temperature measurement</subject><subject>vertical graphene</subject><issn>0093-3813</issn><issn>1939-9375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9r20AQxZfSQty090AvCznL3X_Sao9BcdyCmxji9CpGq1ksI2uVXamhXyOfOOs6FAZmDu_9HvMIueJsyTkz33fbx6VgQiylYErl5Qey4EaazEidfyQLxozMZMnlBfkc44ExrnImFuR15RzaiXpHtwHtHKIPdA2R-oGug3-Z9nSHxxEDTHNACkNLV30yhM5CTys_tLOduiROgApCk657GPwL9H2k3UB_dTZR4A_SbQ_xCNlq2MNgsaXVHo__IL9hTJm3OPrYnVBfyCcHfcSv7_uSPN2tdtWPbPOw_lndbDLLtZoyaNrSpDGtYLbgmJvcKm0UuhZaaJoCcymZanKB2hnVlAKlLZjLTeM0mEJekuszdwz-ecY41Qc_hyFF1kJrU2gl9UnFzqr0R4wBXT2G7gjhb81ZfWq-Ts3Xp-br9-aT5dvZ0iHif7kxKbMo5RuV0IHF</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Huang, Lei</creator><creator>Ikematsu, Hiroto</creator><creator>Kato, Yoshimine</creator><creator>Teii, Kungen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6804-0285</orcidid><orcidid>https://orcid.org/0000-0003-4090-5376</orcidid></search><sort><creationdate>20230201</creationdate><title>Effect of Precursor Gas on Growth Temperature and Electrical Conduction of Carbon Nanowalls in Microwave Plasma-Enhanced Chemical Vapor Deposition</title><author>Huang, Lei ; Ikematsu, Hiroto ; Kato, Yoshimine ; Teii, Kungen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c174t-abd89d899d20c61e595c4794efdadabb6e53304b52e7f94b82e3c60f59bf7a963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Amorphous carbon</topic><topic>Carbon</topic><topic>Carrier transport</topic><topic>chemical vapor deposition (CVD)</topic><topic>Conduction cooling</topic><topic>Electrical conduction</topic><topic>electronic transport</topic><topic>Methane</topic><topic>microwave</topic><topic>Microwave plasmas</topic><topic>Plasma enhanced chemical vapor deposition</topic><topic>Plasma temperature</topic><topic>Plasmas</topic><topic>Precursors</topic><topic>Raman spectroscopy</topic><topic>Substrates</topic><topic>Temperature distribution</topic><topic>Temperature measurement</topic><topic>vertical graphene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Ikematsu, Hiroto</creatorcontrib><creatorcontrib>Kato, Yoshimine</creatorcontrib><creatorcontrib>Teii, Kungen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on plasma science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Lei</au><au>Ikematsu, Hiroto</au><au>Kato, Yoshimine</au><au>Teii, Kungen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Precursor Gas on Growth Temperature and Electrical Conduction of Carbon Nanowalls in Microwave Plasma-Enhanced Chemical Vapor Deposition</atitle><jtitle>IEEE transactions on plasma science</jtitle><stitle>TPS</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>51</volume><issue>2</issue><spage>298</spage><epage>302</epage><pages>298-302</pages><issn>0093-3813</issn><eissn>1939-9375</eissn><coden>ITPSBD</coden><abstract>Moderate-pressure microwave plasmas are used to prepare nitrogen-incorporated carbon nanowalls (CNWs) by chemical vapor deposition using acetylene and methane as precursor gases. The growth temperature range for acetylene is shown to be totally lower than that (&gt;1000 °C) for methane, which is attributed to the difference in degree of hydrogenation of radical species in the two plasmas. The structural order and cluster size of sp2 carbon phase in CNWs characterized by the Raman spectroscopy increase initially and, then, decrease with temperature in each temperature range, showing the same trend as the inverse of the sheet resistance of CNWs. The results indicate that the carrier transport in CNWs depends exclusively on the microstructure of sp2 carbon phase, despite a large difference in the growth temperature range depending on the precursor gas.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPS.2022.3204458</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6804-0285</orcidid><orcidid>https://orcid.org/0000-0003-4090-5376</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-3813
ispartof IEEE transactions on plasma science, 2023-02, Vol.51 (2), p.298-302
issn 0093-3813
1939-9375
language eng
recordid cdi_proquest_journals_2779674376
source IEEE Electronic Library (IEL)
subjects Amorphous carbon
Carbon
Carrier transport
chemical vapor deposition (CVD)
Conduction cooling
Electrical conduction
electronic transport
Methane
microwave
Microwave plasmas
Plasma enhanced chemical vapor deposition
Plasma temperature
Plasmas
Precursors
Raman spectroscopy
Substrates
Temperature distribution
Temperature measurement
vertical graphene
title Effect of Precursor Gas on Growth Temperature and Electrical Conduction of Carbon Nanowalls in Microwave Plasma-Enhanced Chemical Vapor Deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T05%3A20%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Precursor%20Gas%20on%20Growth%20Temperature%20and%20Electrical%20Conduction%20of%20Carbon%20Nanowalls%20in%20Microwave%20Plasma-Enhanced%20Chemical%20Vapor%20Deposition&rft.jtitle=IEEE%20transactions%20on%20plasma%20science&rft.au=Huang,%20Lei&rft.date=2023-02-01&rft.volume=51&rft.issue=2&rft.spage=298&rft.epage=302&rft.pages=298-302&rft.issn=0093-3813&rft.eissn=1939-9375&rft.coden=ITPSBD&rft_id=info:doi/10.1109/TPS.2022.3204458&rft_dat=%3Cproquest_RIE%3E2779674376%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779674376&rft_id=info:pmid/&rft_ieee_id=9996368&rfr_iscdi=true