Mathematical Modeling and Optimization of Ultrasonic Pre-Treatment for Drying of Pumpkin (Cucurbita moschata)

Innovations in food drying processes are usually aimed at reducing drying time and improving the overall properties of dried products. These are important issues from an economic and environmental point of view and can contribute to the sustainability of the whole process. In this study, the effects...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2023-02, Vol.11 (2), p.469
Hauptverfasser: Karlović, Sven, Dujmić, Filip, Brnčić, Suzana Rimac, Sabolović, Marija Badanjak, Ninčević Grassino, Antonela, Škegro, Marko, Šimić, Marko Adrian, Brnčić, Mladen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 469
container_title Processes
container_volume 11
creator Karlović, Sven
Dujmić, Filip
Brnčić, Suzana Rimac
Sabolović, Marija Badanjak
Ninčević Grassino, Antonela
Škegro, Marko
Šimić, Marko Adrian
Brnčić, Mladen
description Innovations in food drying processes are usually aimed at reducing drying time and improving the overall properties of dried products. These are important issues from an economic and environmental point of view and can contribute to the sustainability of the whole process. In this study, the effects of ultrasonic treatment on the drying kinetics of pumpkin pulp are investigated, and mathematical models to predict the drying kinetics are analyzed and optimized. The results show that ultrasonic pretreatment significantly reduces drying time from 451 to 268 min, with optimal processing parameters at 90% of the maximum ultrasonic power and a processing time of 45 min. The total color change of the samples was the lowest at the obtained optimal processing parameters. Based on the values (RMSE and R2) of the investigated mathematical drying models, it was found that the Weibull model is the best fit for the experimental data and is considered suitable for the drying kinetics of ultrasonically pretreated pumpkin samples. In this study, an artificial neural network with 15 neurons in hidden layers was also used to model the drying process in combination with ultrasound pretreatment. The network had a performance of 0.999987 and the mean square error was 8.03 × 10−5, showing how artificial neural networks can successfully predict the effects of all tested process variables on the drying time/moisture ratio.
doi_str_mv 10.3390/pr11020469
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2779669422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A742893561</galeid><sourcerecordid>A742893561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-337a3f522ad9f2b973cf56468e47af5d94eff88b316104642a98fc465985fe2c3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQDaJgqb34CwJeVNi6-dhkcyz1EyztoT0vaTZpU3eTNZs96K83pYLOHGaYeW-GxwPgGuVTQkT-0AWEcpxTJs7ACGPMM8ERP__XX4JJ3x_yFAKRsmAj0C5k3OtWRqtkAxe-1o11OyhdDZddtK39TivvoDdw08Qge--sgqugs3XQMrbaRWh8gI_h68hLsNXQdh_Wwdv5oIawtVHC1vdqL6O8uwIXRja9nvzWMdg8P63nr9n78uVtPnvPFCE0ZoRwSUyBsayFwVvBiTIFo6zUlEtT1IJqY8pySxBDSS7FUpRGUVaIsjAaKzIGN6e7XfCfg-5jdfBDcOllhTkXjAmKcUJNT6idbHRlnfFJoEpZ69Yq77SxaT7jFJeCFAwlwv2JoILv-6BN1QXbyvBVobw6WlD9WUB-ALEKeKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779669422</pqid></control><display><type>article</type><title>Mathematical Modeling and Optimization of Ultrasonic Pre-Treatment for Drying of Pumpkin (Cucurbita moschata)</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Karlović, Sven ; Dujmić, Filip ; Brnčić, Suzana Rimac ; Sabolović, Marija Badanjak ; Ninčević Grassino, Antonela ; Škegro, Marko ; Šimić, Marko Adrian ; Brnčić, Mladen</creator><creatorcontrib>Karlović, Sven ; Dujmić, Filip ; Brnčić, Suzana Rimac ; Sabolović, Marija Badanjak ; Ninčević Grassino, Antonela ; Škegro, Marko ; Šimić, Marko Adrian ; Brnčić, Mladen</creatorcontrib><description>Innovations in food drying processes are usually aimed at reducing drying time and improving the overall properties of dried products. These are important issues from an economic and environmental point of view and can contribute to the sustainability of the whole process. In this study, the effects of ultrasonic treatment on the drying kinetics of pumpkin pulp are investigated, and mathematical models to predict the drying kinetics are analyzed and optimized. The results show that ultrasonic pretreatment significantly reduces drying time from 451 to 268 min, with optimal processing parameters at 90% of the maximum ultrasonic power and a processing time of 45 min. The total color change of the samples was the lowest at the obtained optimal processing parameters. Based on the values (RMSE and R2) of the investigated mathematical drying models, it was found that the Weibull model is the best fit for the experimental data and is considered suitable for the drying kinetics of ultrasonically pretreated pumpkin samples. In this study, an artificial neural network with 15 neurons in hidden layers was also used to model the drying process in combination with ultrasound pretreatment. The network had a performance of 0.999987 and the mean square error was 8.03 × 10−5, showing how artificial neural networks can successfully predict the effects of all tested process variables on the drying time/moisture ratio.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11020469</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial neural networks ; By products ; Carotenoids ; Cavitation ; Drying ; Energy consumption ; Environmental impact ; Feed industry ; Food ; Food processing ; Fruits ; Kinetics ; Mathematical models ; Moisture effects ; Neural networks ; Optimization ; Pretreatment ; Process parameters ; Process variables ; Pumpkins ; Seeds ; Temperature ; Ultrasonic imaging ; Ultrasonic processing</subject><ispartof>Processes, 2023-02, Vol.11 (2), p.469</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-337a3f522ad9f2b973cf56468e47af5d94eff88b316104642a98fc465985fe2c3</citedby><cites>FETCH-LOGICAL-c334t-337a3f522ad9f2b973cf56468e47af5d94eff88b316104642a98fc465985fe2c3</cites><orcidid>0000-0002-2601-7535 ; 0000-0002-1615-3189 ; 0000-0002-8906-4291 ; 0000-0001-7452-3275 ; 0000-0002-6117-2063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Karlović, Sven</creatorcontrib><creatorcontrib>Dujmić, Filip</creatorcontrib><creatorcontrib>Brnčić, Suzana Rimac</creatorcontrib><creatorcontrib>Sabolović, Marija Badanjak</creatorcontrib><creatorcontrib>Ninčević Grassino, Antonela</creatorcontrib><creatorcontrib>Škegro, Marko</creatorcontrib><creatorcontrib>Šimić, Marko Adrian</creatorcontrib><creatorcontrib>Brnčić, Mladen</creatorcontrib><title>Mathematical Modeling and Optimization of Ultrasonic Pre-Treatment for Drying of Pumpkin (Cucurbita moschata)</title><title>Processes</title><description>Innovations in food drying processes are usually aimed at reducing drying time and improving the overall properties of dried products. These are important issues from an economic and environmental point of view and can contribute to the sustainability of the whole process. In this study, the effects of ultrasonic treatment on the drying kinetics of pumpkin pulp are investigated, and mathematical models to predict the drying kinetics are analyzed and optimized. The results show that ultrasonic pretreatment significantly reduces drying time from 451 to 268 min, with optimal processing parameters at 90% of the maximum ultrasonic power and a processing time of 45 min. The total color change of the samples was the lowest at the obtained optimal processing parameters. Based on the values (RMSE and R2) of the investigated mathematical drying models, it was found that the Weibull model is the best fit for the experimental data and is considered suitable for the drying kinetics of ultrasonically pretreated pumpkin samples. In this study, an artificial neural network with 15 neurons in hidden layers was also used to model the drying process in combination with ultrasound pretreatment. The network had a performance of 0.999987 and the mean square error was 8.03 × 10−5, showing how artificial neural networks can successfully predict the effects of all tested process variables on the drying time/moisture ratio.</description><subject>Artificial neural networks</subject><subject>By products</subject><subject>Carotenoids</subject><subject>Cavitation</subject><subject>Drying</subject><subject>Energy consumption</subject><subject>Environmental impact</subject><subject>Feed industry</subject><subject>Food</subject><subject>Food processing</subject><subject>Fruits</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Moisture effects</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Pretreatment</subject><subject>Process parameters</subject><subject>Process variables</subject><subject>Pumpkins</subject><subject>Seeds</subject><subject>Temperature</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic processing</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUU1LAzEQDaJgqb34CwJeVNi6-dhkcyz1EyztoT0vaTZpU3eTNZs96K83pYLOHGaYeW-GxwPgGuVTQkT-0AWEcpxTJs7ACGPMM8ERP__XX4JJ3x_yFAKRsmAj0C5k3OtWRqtkAxe-1o11OyhdDZddtK39TivvoDdw08Qge--sgqugs3XQMrbaRWh8gI_h68hLsNXQdh_Wwdv5oIawtVHC1vdqL6O8uwIXRja9nvzWMdg8P63nr9n78uVtPnvPFCE0ZoRwSUyBsayFwVvBiTIFo6zUlEtT1IJqY8pySxBDSS7FUpRGUVaIsjAaKzIGN6e7XfCfg-5jdfBDcOllhTkXjAmKcUJNT6idbHRlnfFJoEpZ69Yq77SxaT7jFJeCFAwlwv2JoILv-6BN1QXbyvBVobw6WlD9WUB-ALEKeKw</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Karlović, Sven</creator><creator>Dujmić, Filip</creator><creator>Brnčić, Suzana Rimac</creator><creator>Sabolović, Marija Badanjak</creator><creator>Ninčević Grassino, Antonela</creator><creator>Škegro, Marko</creator><creator>Šimić, Marko Adrian</creator><creator>Brnčić, Mladen</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-2601-7535</orcidid><orcidid>https://orcid.org/0000-0002-1615-3189</orcidid><orcidid>https://orcid.org/0000-0002-8906-4291</orcidid><orcidid>https://orcid.org/0000-0001-7452-3275</orcidid><orcidid>https://orcid.org/0000-0002-6117-2063</orcidid></search><sort><creationdate>20230201</creationdate><title>Mathematical Modeling and Optimization of Ultrasonic Pre-Treatment for Drying of Pumpkin (Cucurbita moschata)</title><author>Karlović, Sven ; Dujmić, Filip ; Brnčić, Suzana Rimac ; Sabolović, Marija Badanjak ; Ninčević Grassino, Antonela ; Škegro, Marko ; Šimić, Marko Adrian ; Brnčić, Mladen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-337a3f522ad9f2b973cf56468e47af5d94eff88b316104642a98fc465985fe2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>By products</topic><topic>Carotenoids</topic><topic>Cavitation</topic><topic>Drying</topic><topic>Energy consumption</topic><topic>Environmental impact</topic><topic>Feed industry</topic><topic>Food</topic><topic>Food processing</topic><topic>Fruits</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Moisture effects</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Pretreatment</topic><topic>Process parameters</topic><topic>Process variables</topic><topic>Pumpkins</topic><topic>Seeds</topic><topic>Temperature</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karlović, Sven</creatorcontrib><creatorcontrib>Dujmić, Filip</creatorcontrib><creatorcontrib>Brnčić, Suzana Rimac</creatorcontrib><creatorcontrib>Sabolović, Marija Badanjak</creatorcontrib><creatorcontrib>Ninčević Grassino, Antonela</creatorcontrib><creatorcontrib>Škegro, Marko</creatorcontrib><creatorcontrib>Šimić, Marko Adrian</creatorcontrib><creatorcontrib>Brnčić, Mladen</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karlović, Sven</au><au>Dujmić, Filip</au><au>Brnčić, Suzana Rimac</au><au>Sabolović, Marija Badanjak</au><au>Ninčević Grassino, Antonela</au><au>Škegro, Marko</au><au>Šimić, Marko Adrian</au><au>Brnčić, Mladen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Modeling and Optimization of Ultrasonic Pre-Treatment for Drying of Pumpkin (Cucurbita moschata)</atitle><jtitle>Processes</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>11</volume><issue>2</issue><spage>469</spage><pages>469-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Innovations in food drying processes are usually aimed at reducing drying time and improving the overall properties of dried products. These are important issues from an economic and environmental point of view and can contribute to the sustainability of the whole process. In this study, the effects of ultrasonic treatment on the drying kinetics of pumpkin pulp are investigated, and mathematical models to predict the drying kinetics are analyzed and optimized. The results show that ultrasonic pretreatment significantly reduces drying time from 451 to 268 min, with optimal processing parameters at 90% of the maximum ultrasonic power and a processing time of 45 min. The total color change of the samples was the lowest at the obtained optimal processing parameters. Based on the values (RMSE and R2) of the investigated mathematical drying models, it was found that the Weibull model is the best fit for the experimental data and is considered suitable for the drying kinetics of ultrasonically pretreated pumpkin samples. In this study, an artificial neural network with 15 neurons in hidden layers was also used to model the drying process in combination with ultrasound pretreatment. The network had a performance of 0.999987 and the mean square error was 8.03 × 10−5, showing how artificial neural networks can successfully predict the effects of all tested process variables on the drying time/moisture ratio.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11020469</doi><orcidid>https://orcid.org/0000-0002-2601-7535</orcidid><orcidid>https://orcid.org/0000-0002-1615-3189</orcidid><orcidid>https://orcid.org/0000-0002-8906-4291</orcidid><orcidid>https://orcid.org/0000-0001-7452-3275</orcidid><orcidid>https://orcid.org/0000-0002-6117-2063</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2023-02, Vol.11 (2), p.469
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2779669422
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial neural networks
By products
Carotenoids
Cavitation
Drying
Energy consumption
Environmental impact
Feed industry
Food
Food processing
Fruits
Kinetics
Mathematical models
Moisture effects
Neural networks
Optimization
Pretreatment
Process parameters
Process variables
Pumpkins
Seeds
Temperature
Ultrasonic imaging
Ultrasonic processing
title Mathematical Modeling and Optimization of Ultrasonic Pre-Treatment for Drying of Pumpkin (Cucurbita moschata)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A53%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Modeling%20and%20Optimization%20of%20Ultrasonic%20Pre-Treatment%20for%20Drying%20of%20Pumpkin%20(Cucurbita%20moschata)&rft.jtitle=Processes&rft.au=Karlovi%C4%87,%20Sven&rft.date=2023-02-01&rft.volume=11&rft.issue=2&rft.spage=469&rft.pages=469-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11020469&rft_dat=%3Cgale_proqu%3EA742893561%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779669422&rft_id=info:pmid/&rft_galeid=A742893561&rfr_iscdi=true