A Unified, SNR-Aware SC-LDPC Code Design With Applications to Magnetic Recording

Spatially coupled (SC)-low-density parity-check (LDPC) codes are known to have outstanding error-correction performance and low decoding latency, which make them an excellent choice for high-density magnetic recording (MR) technologies. Whereas previous works on LDPC and SC-LDPC codes mostly take ei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2023-03, Vol.59 (3), p.1-9
Hauptverfasser: Esfahanizadeh, Homa, Ram, Eshed, Cassuto, Yuval, Dolecek, Lara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 3
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 59
creator Esfahanizadeh, Homa
Ram, Eshed
Cassuto, Yuval
Dolecek, Lara
description Spatially coupled (SC)-low-density parity-check (LDPC) codes are known to have outstanding error-correction performance and low decoding latency, which make them an excellent choice for high-density magnetic recording (MR) technologies. Whereas previous works on LDPC and SC-LDPC codes mostly take either an asymptotic or a finite-length design approach, we propose a unified framework for jointly optimizing the codes' thresholds and cycle counts to address both regimes. We focus on circulant-based (CB) SC-LDPC code family as a representative, high-performance exemplar of structured SC-LDPC codes. The framework is based on efficient traversal and pruning of the code search space, building on the fact that the performance of a CB SC-LDPC code depends on some characteristics of the code's partitioning matrix, which by itself is much smaller than the code's full parity-check matrix. We then propose an algorithm that traverses all non-equivalent partitioning matrices and outputs a list of codes, each offering an attractive point on the trade-off between asymptotic and finite-length performance. Our simulations show that our framework results in SC-LDPC codes that outperform the state-of-the-art constructions, over both additive white Gaussian noise (AWGN) and partial response (PR) channel models, and that it offers the flexibility to choose low-signal-to-noise ratio (SNR), high-SNR, or in- between SNR region considering system requirements, e.g., that of the MR device.
doi_str_mv 10.1109/TMAG.2022.3204923
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2779664027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9878357</ieee_id><sourcerecordid>2779664027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-e861359f6ca2ed88005487c2afb93e8da32fe79ed84cd9e1d4a3dc6aea1213443</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeGtnvtoml6XqFDYd-8DLEJPTmTHbmnSI_96ODa8OL-d5z4EHoWtKRpQSdb-cFuMRI4yNOCNCMX6CBlQJmhCSqVM0IITKRIlMnKOLGDd9FCklAzQr8Kr2lQd3hxev86T4MQHwokwmD7MSl40D_ADRr2v87rtPXLTt1lvT-aaOuGvw1Kxr6LzFc7BNcL5eX6KzymwjXB3nEK2eHpflczJ5G7-UxSSxTKRdAjKjPFVVZg0DJyUhqZC5Zab6UBykM5xVkKt-JaxTQJ0w3NnMgKGMciH4EN0e7rah-d5B7PSm2YW6f6lZnqssE4TlPUUPlA1NjAEq3Qb_ZcKvpkTvxem9OL0Xp4_i-s7NoeMB4J9XMpc8zfkfkzhneQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779664027</pqid></control><display><type>article</type><title>A Unified, SNR-Aware SC-LDPC Code Design With Applications to Magnetic Recording</title><source>IEEE Electronic Library (IEL)</source><creator>Esfahanizadeh, Homa ; Ram, Eshed ; Cassuto, Yuval ; Dolecek, Lara</creator><creatorcontrib>Esfahanizadeh, Homa ; Ram, Eshed ; Cassuto, Yuval ; Dolecek, Lara</creatorcontrib><description>Spatially coupled (SC)-low-density parity-check (LDPC) codes are known to have outstanding error-correction performance and low decoding latency, which make them an excellent choice for high-density magnetic recording (MR) technologies. Whereas previous works on LDPC and SC-LDPC codes mostly take either an asymptotic or a finite-length design approach, we propose a unified framework for jointly optimizing the codes' thresholds and cycle counts to address both regimes. We focus on circulant-based (CB) SC-LDPC code family as a representative, high-performance exemplar of structured SC-LDPC codes. The framework is based on efficient traversal and pruning of the code search space, building on the fact that the performance of a CB SC-LDPC code depends on some characteristics of the code's partitioning matrix, which by itself is much smaller than the code's full parity-check matrix. We then propose an algorithm that traverses all non-equivalent partitioning matrices and outputs a list of codes, each offering an attractive point on the trade-off between asymptotic and finite-length performance. Our simulations show that our framework results in SC-LDPC codes that outperform the state-of-the-art constructions, over both additive white Gaussian noise (AWGN) and partial response (PR) channel models, and that it offers the flexibility to choose low-signal-to-noise ratio (SNR), high-SNR, or in- between SNR region considering system requirements, e.g., that of the MR device.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2022.3204923</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Asymptotic properties ; Building codes ; Channel coding ; Codes ; Decoding ; Error correcting codes ; Error correction ; Low density parity check codes ; Magnetic recording ; Magnetism ; Optimization ; Parity ; Parity check codes ; partial-response (PR) channel ; Partitioning ; Performance evaluation ; Random noise ; Signal to noise ratio ; signal-to-noise ratio (SNR) ; spatially coupled (SC) low-density parity-check (LDPC) codes</subject><ispartof>IEEE transactions on magnetics, 2023-03, Vol.59 (3), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-e861359f6ca2ed88005487c2afb93e8da32fe79ed84cd9e1d4a3dc6aea1213443</cites><orcidid>0000-0001-6369-6699 ; 0000-0003-3736-4345 ; 0000-0003-1217-692X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9878357$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9878357$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Esfahanizadeh, Homa</creatorcontrib><creatorcontrib>Ram, Eshed</creatorcontrib><creatorcontrib>Cassuto, Yuval</creatorcontrib><creatorcontrib>Dolecek, Lara</creatorcontrib><title>A Unified, SNR-Aware SC-LDPC Code Design With Applications to Magnetic Recording</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>Spatially coupled (SC)-low-density parity-check (LDPC) codes are known to have outstanding error-correction performance and low decoding latency, which make them an excellent choice for high-density magnetic recording (MR) technologies. Whereas previous works on LDPC and SC-LDPC codes mostly take either an asymptotic or a finite-length design approach, we propose a unified framework for jointly optimizing the codes' thresholds and cycle counts to address both regimes. We focus on circulant-based (CB) SC-LDPC code family as a representative, high-performance exemplar of structured SC-LDPC codes. The framework is based on efficient traversal and pruning of the code search space, building on the fact that the performance of a CB SC-LDPC code depends on some characteristics of the code's partitioning matrix, which by itself is much smaller than the code's full parity-check matrix. We then propose an algorithm that traverses all non-equivalent partitioning matrices and outputs a list of codes, each offering an attractive point on the trade-off between asymptotic and finite-length performance. Our simulations show that our framework results in SC-LDPC codes that outperform the state-of-the-art constructions, over both additive white Gaussian noise (AWGN) and partial response (PR) channel models, and that it offers the flexibility to choose low-signal-to-noise ratio (SNR), high-SNR, or in- between SNR region considering system requirements, e.g., that of the MR device.</description><subject>Algorithms</subject><subject>Asymptotic properties</subject><subject>Building codes</subject><subject>Channel coding</subject><subject>Codes</subject><subject>Decoding</subject><subject>Error correcting codes</subject><subject>Error correction</subject><subject>Low density parity check codes</subject><subject>Magnetic recording</subject><subject>Magnetism</subject><subject>Optimization</subject><subject>Parity</subject><subject>Parity check codes</subject><subject>partial-response (PR) channel</subject><subject>Partitioning</subject><subject>Performance evaluation</subject><subject>Random noise</subject><subject>Signal to noise ratio</subject><subject>signal-to-noise ratio (SNR)</subject><subject>spatially coupled (SC) low-density parity-check (LDPC) codes</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeGtnvtoml6XqFDYd-8DLEJPTmTHbmnSI_96ODa8OL-d5z4EHoWtKRpQSdb-cFuMRI4yNOCNCMX6CBlQJmhCSqVM0IITKRIlMnKOLGDd9FCklAzQr8Kr2lQd3hxev86T4MQHwokwmD7MSl40D_ADRr2v87rtPXLTt1lvT-aaOuGvw1Kxr6LzFc7BNcL5eX6KzymwjXB3nEK2eHpflczJ5G7-UxSSxTKRdAjKjPFVVZg0DJyUhqZC5Zab6UBykM5xVkKt-JaxTQJ0w3NnMgKGMciH4EN0e7rah-d5B7PSm2YW6f6lZnqssE4TlPUUPlA1NjAEq3Qb_ZcKvpkTvxem9OL0Xp4_i-s7NoeMB4J9XMpc8zfkfkzhneQ</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Esfahanizadeh, Homa</creator><creator>Ram, Eshed</creator><creator>Cassuto, Yuval</creator><creator>Dolecek, Lara</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6369-6699</orcidid><orcidid>https://orcid.org/0000-0003-3736-4345</orcidid><orcidid>https://orcid.org/0000-0003-1217-692X</orcidid></search><sort><creationdate>20230301</creationdate><title>A Unified, SNR-Aware SC-LDPC Code Design With Applications to Magnetic Recording</title><author>Esfahanizadeh, Homa ; Ram, Eshed ; Cassuto, Yuval ; Dolecek, Lara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-e861359f6ca2ed88005487c2afb93e8da32fe79ed84cd9e1d4a3dc6aea1213443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Asymptotic properties</topic><topic>Building codes</topic><topic>Channel coding</topic><topic>Codes</topic><topic>Decoding</topic><topic>Error correcting codes</topic><topic>Error correction</topic><topic>Low density parity check codes</topic><topic>Magnetic recording</topic><topic>Magnetism</topic><topic>Optimization</topic><topic>Parity</topic><topic>Parity check codes</topic><topic>partial-response (PR) channel</topic><topic>Partitioning</topic><topic>Performance evaluation</topic><topic>Random noise</topic><topic>Signal to noise ratio</topic><topic>signal-to-noise ratio (SNR)</topic><topic>spatially coupled (SC) low-density parity-check (LDPC) codes</topic><toplevel>online_resources</toplevel><creatorcontrib>Esfahanizadeh, Homa</creatorcontrib><creatorcontrib>Ram, Eshed</creatorcontrib><creatorcontrib>Cassuto, Yuval</creatorcontrib><creatorcontrib>Dolecek, Lara</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Esfahanizadeh, Homa</au><au>Ram, Eshed</au><au>Cassuto, Yuval</au><au>Dolecek, Lara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Unified, SNR-Aware SC-LDPC Code Design With Applications to Magnetic Recording</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>59</volume><issue>3</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>Spatially coupled (SC)-low-density parity-check (LDPC) codes are known to have outstanding error-correction performance and low decoding latency, which make them an excellent choice for high-density magnetic recording (MR) technologies. Whereas previous works on LDPC and SC-LDPC codes mostly take either an asymptotic or a finite-length design approach, we propose a unified framework for jointly optimizing the codes' thresholds and cycle counts to address both regimes. We focus on circulant-based (CB) SC-LDPC code family as a representative, high-performance exemplar of structured SC-LDPC codes. The framework is based on efficient traversal and pruning of the code search space, building on the fact that the performance of a CB SC-LDPC code depends on some characteristics of the code's partitioning matrix, which by itself is much smaller than the code's full parity-check matrix. We then propose an algorithm that traverses all non-equivalent partitioning matrices and outputs a list of codes, each offering an attractive point on the trade-off between asymptotic and finite-length performance. Our simulations show that our framework results in SC-LDPC codes that outperform the state-of-the-art constructions, over both additive white Gaussian noise (AWGN) and partial response (PR) channel models, and that it offers the flexibility to choose low-signal-to-noise ratio (SNR), high-SNR, or in- between SNR region considering system requirements, e.g., that of the MR device.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2022.3204923</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6369-6699</orcidid><orcidid>https://orcid.org/0000-0003-3736-4345</orcidid><orcidid>https://orcid.org/0000-0003-1217-692X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2023-03, Vol.59 (3), p.1-9
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_journals_2779664027
source IEEE Electronic Library (IEL)
subjects Algorithms
Asymptotic properties
Building codes
Channel coding
Codes
Decoding
Error correcting codes
Error correction
Low density parity check codes
Magnetic recording
Magnetism
Optimization
Parity
Parity check codes
partial-response (PR) channel
Partitioning
Performance evaluation
Random noise
Signal to noise ratio
signal-to-noise ratio (SNR)
spatially coupled (SC) low-density parity-check (LDPC) codes
title A Unified, SNR-Aware SC-LDPC Code Design With Applications to Magnetic Recording
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A06%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Unified,%20SNR-Aware%20SC-LDPC%20Code%20Design%20With%20Applications%20to%20Magnetic%20Recording&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Esfahanizadeh,%20Homa&rft.date=2023-03-01&rft.volume=59&rft.issue=3&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2022.3204923&rft_dat=%3Cproquest_RIE%3E2779664027%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779664027&rft_id=info:pmid/&rft_ieee_id=9878357&rfr_iscdi=true