Simulation Prediction and Experiment of Brittle Damage of Cemented Carbide Microgroove Turning Tools Based on Peridynamics

Brittle damage is a key factor restricting tool life extension. The peridynamic (PD) theory was applied to explain and predict the brittle damage of the near-field of the cutting edge of a cemented carbide microgroove turning tool (CCMTT) for the first time in this study, and the PD modeling of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2023-02, Vol.11 (2), p.520
Hauptverfasser: Ren, Zhongwei, Jiang, Hongwan, Zou, Zhongfei, Yuan, Sen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 520
container_title Processes
container_volume 11
creator Ren, Zhongwei
Jiang, Hongwan
Zou, Zhongfei
Yuan, Sen
description Brittle damage is a key factor restricting tool life extension. The peridynamic (PD) theory was applied to explain and predict the brittle damage of the near-field of the cutting edge of a cemented carbide microgroove turning tool (CCMTT) for the first time in this study, and the PD modeling of the complex surface was realized. The results showed that the PD modeling accuracy of the CCMTT can reach ±3.4%. The displacement of material points in the near-field of the cutting edge of the CCMTT is caused by the combined effect of the external load and the internal interaction force, and the former is dominant. There is no linear relationship between the displacement and the calculation time; instead, there are fluctuations and a maximum increase in the material point displacement in the main cutting direction. Only microdisplacements of material points in the near-field of the cutting edge occur under the given cutting conditions. The accumulation of microcracks caused by microdisplacement does not reach the transition threshold to form macrocracks. This agrees well with the experimental results, and the relative error can be controlled within 3.2%.
doi_str_mv 10.3390/pr11020520
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2779651692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A742893612</galeid><sourcerecordid>A742893612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-5797810f42860922f7395efa36bf145dff139b4e9e66a9059322a757cb6b76373</originalsourceid><addsrcrecordid>eNpNUUtPwzAMrhBITGMXfkEkbkgdebTJctzKeEhDIDHOVdo6Vaa2KUmHGL-elCGBfbBlf7Y_21F0SfCcMYlvekcIpjil-CSaUEpFLAURp__882jm_Q4HkYQtUj6Jvl5Nu2_UYGyHXhxUpvxxVVeh9WcPzrTQDchqtHJmGBpAt6pVNYyRDMYcVChTrjAVoCdTOls7az8AbfeuM12NttY2Hq2UD7hxROhYHTrVmtJfRGdaNR5mv3Yavd2tt9lDvHm-f8yWm7hkLBniVEixIFgndMGxpFQLJlPQivFCkySttCZMFglI4FxJnEpGqRKpKAteCM4Em0ZXx769s-978EO-s4FdGJlTISRPCZc0oOZHVK0ayE2n7eBUGbSCQNZ2oE2IL0WgIRknY8H1sSAs7b0DnffhWsodcoLz8R_53z_YNznMfJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779651692</pqid></control><display><type>article</type><title>Simulation Prediction and Experiment of Brittle Damage of Cemented Carbide Microgroove Turning Tools Based on Peridynamics</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ren, Zhongwei ; Jiang, Hongwan ; Zou, Zhongfei ; Yuan, Sen</creator><creatorcontrib>Ren, Zhongwei ; Jiang, Hongwan ; Zou, Zhongfei ; Yuan, Sen</creatorcontrib><description>Brittle damage is a key factor restricting tool life extension. The peridynamic (PD) theory was applied to explain and predict the brittle damage of the near-field of the cutting edge of a cemented carbide microgroove turning tool (CCMTT) for the first time in this study, and the PD modeling of the complex surface was realized. The results showed that the PD modeling accuracy of the CCMTT can reach ±3.4%. The displacement of material points in the near-field of the cutting edge of the CCMTT is caused by the combined effect of the external load and the internal interaction force, and the former is dominant. There is no linear relationship between the displacement and the calculation time; instead, there are fluctuations and a maximum increase in the material point displacement in the main cutting direction. Only microdisplacements of material points in the near-field of the cutting edge occur under the given cutting conditions. The accumulation of microcracks caused by microdisplacement does not reach the transition threshold to form macrocracks. This agrees well with the experimental results, and the relative error can be controlled within 3.2%.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11020520</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Brittleness ; Carbide tools ; Cemented carbides ; Crack propagation ; Cutting tools ; Damage ; Deformation ; Displacement ; Experiments ; Life extension ; Microcracks ; Model accuracy ; Modelling ; Near fields ; Propagation ; Research methodology ; Spectrum analysis ; Tool life ; Turning (machining)</subject><ispartof>Processes, 2023-02, Vol.11 (2), p.520</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-5797810f42860922f7395efa36bf145dff139b4e9e66a9059322a757cb6b76373</citedby><cites>FETCH-LOGICAL-c334t-5797810f42860922f7395efa36bf145dff139b4e9e66a9059322a757cb6b76373</cites><orcidid>0000-0002-1992-1024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ren, Zhongwei</creatorcontrib><creatorcontrib>Jiang, Hongwan</creatorcontrib><creatorcontrib>Zou, Zhongfei</creatorcontrib><creatorcontrib>Yuan, Sen</creatorcontrib><title>Simulation Prediction and Experiment of Brittle Damage of Cemented Carbide Microgroove Turning Tools Based on Peridynamics</title><title>Processes</title><description>Brittle damage is a key factor restricting tool life extension. The peridynamic (PD) theory was applied to explain and predict the brittle damage of the near-field of the cutting edge of a cemented carbide microgroove turning tool (CCMTT) for the first time in this study, and the PD modeling of the complex surface was realized. The results showed that the PD modeling accuracy of the CCMTT can reach ±3.4%. The displacement of material points in the near-field of the cutting edge of the CCMTT is caused by the combined effect of the external load and the internal interaction force, and the former is dominant. There is no linear relationship between the displacement and the calculation time; instead, there are fluctuations and a maximum increase in the material point displacement in the main cutting direction. Only microdisplacements of material points in the near-field of the cutting edge occur under the given cutting conditions. The accumulation of microcracks caused by microdisplacement does not reach the transition threshold to form macrocracks. This agrees well with the experimental results, and the relative error can be controlled within 3.2%.</description><subject>Brittleness</subject><subject>Carbide tools</subject><subject>Cemented carbides</subject><subject>Crack propagation</subject><subject>Cutting tools</subject><subject>Damage</subject><subject>Deformation</subject><subject>Displacement</subject><subject>Experiments</subject><subject>Life extension</subject><subject>Microcracks</subject><subject>Model accuracy</subject><subject>Modelling</subject><subject>Near fields</subject><subject>Propagation</subject><subject>Research methodology</subject><subject>Spectrum analysis</subject><subject>Tool life</subject><subject>Turning (machining)</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUUtPwzAMrhBITGMXfkEkbkgdebTJctzKeEhDIDHOVdo6Vaa2KUmHGL-elCGBfbBlf7Y_21F0SfCcMYlvekcIpjil-CSaUEpFLAURp__882jm_Q4HkYQtUj6Jvl5Nu2_UYGyHXhxUpvxxVVeh9WcPzrTQDchqtHJmGBpAt6pVNYyRDMYcVChTrjAVoCdTOls7az8AbfeuM12NttY2Hq2UD7hxROhYHTrVmtJfRGdaNR5mv3Yavd2tt9lDvHm-f8yWm7hkLBniVEixIFgndMGxpFQLJlPQivFCkySttCZMFglI4FxJnEpGqRKpKAteCM4Em0ZXx769s-978EO-s4FdGJlTISRPCZc0oOZHVK0ayE2n7eBUGbSCQNZ2oE2IL0WgIRknY8H1sSAs7b0DnffhWsodcoLz8R_53z_YNznMfJg</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Ren, Zhongwei</creator><creator>Jiang, Hongwan</creator><creator>Zou, Zhongfei</creator><creator>Yuan, Sen</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1992-1024</orcidid></search><sort><creationdate>20230201</creationdate><title>Simulation Prediction and Experiment of Brittle Damage of Cemented Carbide Microgroove Turning Tools Based on Peridynamics</title><author>Ren, Zhongwei ; Jiang, Hongwan ; Zou, Zhongfei ; Yuan, Sen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-5797810f42860922f7395efa36bf145dff139b4e9e66a9059322a757cb6b76373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Brittleness</topic><topic>Carbide tools</topic><topic>Cemented carbides</topic><topic>Crack propagation</topic><topic>Cutting tools</topic><topic>Damage</topic><topic>Deformation</topic><topic>Displacement</topic><topic>Experiments</topic><topic>Life extension</topic><topic>Microcracks</topic><topic>Model accuracy</topic><topic>Modelling</topic><topic>Near fields</topic><topic>Propagation</topic><topic>Research methodology</topic><topic>Spectrum analysis</topic><topic>Tool life</topic><topic>Turning (machining)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Zhongwei</creatorcontrib><creatorcontrib>Jiang, Hongwan</creatorcontrib><creatorcontrib>Zou, Zhongfei</creatorcontrib><creatorcontrib>Yuan, Sen</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Zhongwei</au><au>Jiang, Hongwan</au><au>Zou, Zhongfei</au><au>Yuan, Sen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation Prediction and Experiment of Brittle Damage of Cemented Carbide Microgroove Turning Tools Based on Peridynamics</atitle><jtitle>Processes</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>11</volume><issue>2</issue><spage>520</spage><pages>520-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Brittle damage is a key factor restricting tool life extension. The peridynamic (PD) theory was applied to explain and predict the brittle damage of the near-field of the cutting edge of a cemented carbide microgroove turning tool (CCMTT) for the first time in this study, and the PD modeling of the complex surface was realized. The results showed that the PD modeling accuracy of the CCMTT can reach ±3.4%. The displacement of material points in the near-field of the cutting edge of the CCMTT is caused by the combined effect of the external load and the internal interaction force, and the former is dominant. There is no linear relationship between the displacement and the calculation time; instead, there are fluctuations and a maximum increase in the material point displacement in the main cutting direction. Only microdisplacements of material points in the near-field of the cutting edge occur under the given cutting conditions. The accumulation of microcracks caused by microdisplacement does not reach the transition threshold to form macrocracks. This agrees well with the experimental results, and the relative error can be controlled within 3.2%.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11020520</doi><orcidid>https://orcid.org/0000-0002-1992-1024</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2023-02, Vol.11 (2), p.520
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2779651692
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Brittleness
Carbide tools
Cemented carbides
Crack propagation
Cutting tools
Damage
Deformation
Displacement
Experiments
Life extension
Microcracks
Model accuracy
Modelling
Near fields
Propagation
Research methodology
Spectrum analysis
Tool life
Turning (machining)
title Simulation Prediction and Experiment of Brittle Damage of Cemented Carbide Microgroove Turning Tools Based on Peridynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A50%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20Prediction%20and%20Experiment%20of%20Brittle%20Damage%20of%20Cemented%20Carbide%20Microgroove%20Turning%20Tools%20Based%20on%20Peridynamics&rft.jtitle=Processes&rft.au=Ren,%20Zhongwei&rft.date=2023-02-01&rft.volume=11&rft.issue=2&rft.spage=520&rft.pages=520-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11020520&rft_dat=%3Cgale_proqu%3EA742893612%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779651692&rft_id=info:pmid/&rft_galeid=A742893612&rfr_iscdi=true