On-demand electrical control of spin qubits
Once called a ‘classically non-describable two-valuedness’ by Pauli, the electron spin forms a qubit that is naturally robust to electric fluctuations. Paradoxically, a common control strategy is the integration of micromagnets to enhance the coupling between spins and electric fields, which, in tur...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2023-02, Vol.18 (2), p.131-136 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 136 |
---|---|
container_issue | 2 |
container_start_page | 131 |
container_title | Nature nanotechnology |
container_volume | 18 |
creator | Gilbert, Will Tanttu, Tuomo Lim, Wee Han Feng, MengKe Huang, Jonathan Y. Cifuentes, Jesus D. Serrano, Santiago Mai, Philip Y. Leon, Ross C. C. Escott, Christopher C. Itoh, Kohei M. Abrosimov, Nikolay V. Pohl, Hans-Joachim Thewalt, Michael L. W. Hudson, Fay E. Morello, Andrea Laucht, Arne Yang, Chih Hwan Saraiva, Andre Dzurak, Andrew S. |
description | Once called a ‘classically non-describable two-valuedness’ by Pauli, the electron spin forms a qubit that is naturally robust to electric fluctuations. Paradoxically, a common control strategy is the integration of micromagnets to enhance the coupling between spins and electric fields, which, in turn, hampers noise immunity and adds architectural complexity. Here we exploit a switchable interaction between spins and orbital motion of electrons in silicon quantum dots, without a micromagnet. The weak effects of relativistic spin–orbit interaction in silicon are enhanced, leading to a speed up in Rabi frequency by a factor of up to 650 by controlling the energy quantization of electrons in the nanostructure. Fast electrical control is demonstrated in multiple devices and electronic configurations. Using the electrical drive, we achieve a coherence time
T
2,Hahn
≈ 50 μs, fast single-qubit gates with
T
π/2
= 3 ns and gate fidelities of 99.93%, probed by randomized benchmarking. High-performance all-electrical control improves the prospects for scalable silicon quantum computing.
High-performance all-electrical control is a prerequisite for scalable silicon quantum computing. The switchable interaction between spins and orbital motion of electrons in silicon quantum dots now enables the electrical control of a spin qubit with high fidelity and speed, without the need for integrating a micromagnet. |
doi_str_mv | 10.1038/s41565-022-01280-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2779611635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2779611635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-156b8d7435dce1ace73b849e8b5bd78655fe11816f75429cc7f4b6bc7fed7b873</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EoiXwBzigSByRwetH7BxRxUuq1AucrfgRlCpNWjs58O9xSSk3TrPSzs6sPoSugdwDYeohchCFwIRSTIAqgvkJmoPkCjNWitPjrOQMXcS4JkTQkvJzNGNFwQRjMEd3qw47v6k6l_vW2yE0tmpz23dD6Nu8r_O4bbp8N5pmiJforK7a6K8OmqGP56f3xSterl7eFo9LbDmUA05PGeUkZ8JZD5X1khnFS6-MME6qQojaAygoaik4La2VNTeFSeKdNEqyDN1OudvQ70YfB73ux9ClSk2lLAuA_fcZopPLhj7G4Gu9Dc2mCl8aiN7z0RMfnfjoHz6ap6ObQ_RoNt4dT36BJAObDDGtuk8f_rr_if0G_mlvGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779611635</pqid></control><display><type>article</type><title>On-demand electrical control of spin qubits</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gilbert, Will ; Tanttu, Tuomo ; Lim, Wee Han ; Feng, MengKe ; Huang, Jonathan Y. ; Cifuentes, Jesus D. ; Serrano, Santiago ; Mai, Philip Y. ; Leon, Ross C. C. ; Escott, Christopher C. ; Itoh, Kohei M. ; Abrosimov, Nikolay V. ; Pohl, Hans-Joachim ; Thewalt, Michael L. W. ; Hudson, Fay E. ; Morello, Andrea ; Laucht, Arne ; Yang, Chih Hwan ; Saraiva, Andre ; Dzurak, Andrew S.</creator><creatorcontrib>Gilbert, Will ; Tanttu, Tuomo ; Lim, Wee Han ; Feng, MengKe ; Huang, Jonathan Y. ; Cifuentes, Jesus D. ; Serrano, Santiago ; Mai, Philip Y. ; Leon, Ross C. C. ; Escott, Christopher C. ; Itoh, Kohei M. ; Abrosimov, Nikolay V. ; Pohl, Hans-Joachim ; Thewalt, Michael L. W. ; Hudson, Fay E. ; Morello, Andrea ; Laucht, Arne ; Yang, Chih Hwan ; Saraiva, Andre ; Dzurak, Andrew S.</creatorcontrib><description>Once called a ‘classically non-describable two-valuedness’ by Pauli, the electron spin forms a qubit that is naturally robust to electric fluctuations. Paradoxically, a common control strategy is the integration of micromagnets to enhance the coupling between spins and electric fields, which, in turn, hampers noise immunity and adds architectural complexity. Here we exploit a switchable interaction between spins and orbital motion of electrons in silicon quantum dots, without a micromagnet. The weak effects of relativistic spin–orbit interaction in silicon are enhanced, leading to a speed up in Rabi frequency by a factor of up to 650 by controlling the energy quantization of electrons in the nanostructure. Fast electrical control is demonstrated in multiple devices and electronic configurations. Using the electrical drive, we achieve a coherence time
T
2,Hahn
≈ 50 μs, fast single-qubit gates with
T
π/2
= 3 ns and gate fidelities of 99.93%, probed by randomized benchmarking. High-performance all-electrical control improves the prospects for scalable silicon quantum computing.
High-performance all-electrical control is a prerequisite for scalable silicon quantum computing. The switchable interaction between spins and orbital motion of electrons in silicon quantum dots now enables the electrical control of a spin qubit with high fidelity and speed, without the need for integrating a micromagnet.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-022-01280-4</identifier><identifier>PMID: 36635331</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1001 ; 639/766/483/2802 ; 639/925/927/481 ; Chemistry and Materials Science ; Electric fields ; Electron spin ; Electronic devices ; Electrons ; Materials Science ; Nanotechnology ; Nanotechnology and Microengineering ; Quantum computing ; Quantum dots ; Qubits (quantum computing) ; Rabi frequency ; Silicon ; Spin-orbit interactions</subject><ispartof>Nature nanotechnology, 2023-02, Vol.18 (2), p.131-136</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-156b8d7435dce1ace73b849e8b5bd78655fe11816f75429cc7f4b6bc7fed7b873</citedby><cites>FETCH-LOGICAL-c419t-156b8d7435dce1ace73b849e8b5bd78655fe11816f75429cc7f4b6bc7fed7b873</cites><orcidid>0000-0002-8894-7383 ; 0000-0001-7445-699X ; 0000-0001-7892-7963 ; 0000-0002-7209-9180 ; 0000-0002-8153-4893 ; 0000-0003-0134-3657 ; 0000-0002-8713-150X ; 0000-0001-7127-5982 ; 0000-0002-2832-3237 ; 0000-0003-1389-5096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-022-01280-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-022-01280-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36635331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilbert, Will</creatorcontrib><creatorcontrib>Tanttu, Tuomo</creatorcontrib><creatorcontrib>Lim, Wee Han</creatorcontrib><creatorcontrib>Feng, MengKe</creatorcontrib><creatorcontrib>Huang, Jonathan Y.</creatorcontrib><creatorcontrib>Cifuentes, Jesus D.</creatorcontrib><creatorcontrib>Serrano, Santiago</creatorcontrib><creatorcontrib>Mai, Philip Y.</creatorcontrib><creatorcontrib>Leon, Ross C. C.</creatorcontrib><creatorcontrib>Escott, Christopher C.</creatorcontrib><creatorcontrib>Itoh, Kohei M.</creatorcontrib><creatorcontrib>Abrosimov, Nikolay V.</creatorcontrib><creatorcontrib>Pohl, Hans-Joachim</creatorcontrib><creatorcontrib>Thewalt, Michael L. W.</creatorcontrib><creatorcontrib>Hudson, Fay E.</creatorcontrib><creatorcontrib>Morello, Andrea</creatorcontrib><creatorcontrib>Laucht, Arne</creatorcontrib><creatorcontrib>Yang, Chih Hwan</creatorcontrib><creatorcontrib>Saraiva, Andre</creatorcontrib><creatorcontrib>Dzurak, Andrew S.</creatorcontrib><title>On-demand electrical control of spin qubits</title><title>Nature nanotechnology</title><addtitle>Nat. Nanotechnol</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Once called a ‘classically non-describable two-valuedness’ by Pauli, the electron spin forms a qubit that is naturally robust to electric fluctuations. Paradoxically, a common control strategy is the integration of micromagnets to enhance the coupling between spins and electric fields, which, in turn, hampers noise immunity and adds architectural complexity. Here we exploit a switchable interaction between spins and orbital motion of electrons in silicon quantum dots, without a micromagnet. The weak effects of relativistic spin–orbit interaction in silicon are enhanced, leading to a speed up in Rabi frequency by a factor of up to 650 by controlling the energy quantization of electrons in the nanostructure. Fast electrical control is demonstrated in multiple devices and electronic configurations. Using the electrical drive, we achieve a coherence time
T
2,Hahn
≈ 50 μs, fast single-qubit gates with
T
π/2
= 3 ns and gate fidelities of 99.93%, probed by randomized benchmarking. High-performance all-electrical control improves the prospects for scalable silicon quantum computing.
High-performance all-electrical control is a prerequisite for scalable silicon quantum computing. The switchable interaction between spins and orbital motion of electrons in silicon quantum dots now enables the electrical control of a spin qubit with high fidelity and speed, without the need for integrating a micromagnet.</description><subject>639/766/119/1001</subject><subject>639/766/483/2802</subject><subject>639/925/927/481</subject><subject>Chemistry and Materials Science</subject><subject>Electric fields</subject><subject>Electron spin</subject><subject>Electronic devices</subject><subject>Electrons</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>Qubits (quantum computing)</subject><subject>Rabi frequency</subject><subject>Silicon</subject><subject>Spin-orbit interactions</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtPwzAQhC0EoiXwBzigSByRwetH7BxRxUuq1AucrfgRlCpNWjs58O9xSSk3TrPSzs6sPoSugdwDYeohchCFwIRSTIAqgvkJmoPkCjNWitPjrOQMXcS4JkTQkvJzNGNFwQRjMEd3qw47v6k6l_vW2yE0tmpz23dD6Nu8r_O4bbp8N5pmiJforK7a6K8OmqGP56f3xSterl7eFo9LbDmUA05PGeUkZ8JZD5X1khnFS6-MME6qQojaAygoaik4La2VNTeFSeKdNEqyDN1OudvQ70YfB73ux9ClSk2lLAuA_fcZopPLhj7G4Gu9Dc2mCl8aiN7z0RMfnfjoHz6ap6ObQ_RoNt4dT36BJAObDDGtuk8f_rr_if0G_mlvGQ</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Gilbert, Will</creator><creator>Tanttu, Tuomo</creator><creator>Lim, Wee Han</creator><creator>Feng, MengKe</creator><creator>Huang, Jonathan Y.</creator><creator>Cifuentes, Jesus D.</creator><creator>Serrano, Santiago</creator><creator>Mai, Philip Y.</creator><creator>Leon, Ross C. C.</creator><creator>Escott, Christopher C.</creator><creator>Itoh, Kohei M.</creator><creator>Abrosimov, Nikolay V.</creator><creator>Pohl, Hans-Joachim</creator><creator>Thewalt, Michael L. W.</creator><creator>Hudson, Fay E.</creator><creator>Morello, Andrea</creator><creator>Laucht, Arne</creator><creator>Yang, Chih Hwan</creator><creator>Saraiva, Andre</creator><creator>Dzurak, Andrew S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-8894-7383</orcidid><orcidid>https://orcid.org/0000-0001-7445-699X</orcidid><orcidid>https://orcid.org/0000-0001-7892-7963</orcidid><orcidid>https://orcid.org/0000-0002-7209-9180</orcidid><orcidid>https://orcid.org/0000-0002-8153-4893</orcidid><orcidid>https://orcid.org/0000-0003-0134-3657</orcidid><orcidid>https://orcid.org/0000-0002-8713-150X</orcidid><orcidid>https://orcid.org/0000-0001-7127-5982</orcidid><orcidid>https://orcid.org/0000-0002-2832-3237</orcidid><orcidid>https://orcid.org/0000-0003-1389-5096</orcidid></search><sort><creationdate>20230201</creationdate><title>On-demand electrical control of spin qubits</title><author>Gilbert, Will ; Tanttu, Tuomo ; Lim, Wee Han ; Feng, MengKe ; Huang, Jonathan Y. ; Cifuentes, Jesus D. ; Serrano, Santiago ; Mai, Philip Y. ; Leon, Ross C. C. ; Escott, Christopher C. ; Itoh, Kohei M. ; Abrosimov, Nikolay V. ; Pohl, Hans-Joachim ; Thewalt, Michael L. W. ; Hudson, Fay E. ; Morello, Andrea ; Laucht, Arne ; Yang, Chih Hwan ; Saraiva, Andre ; Dzurak, Andrew S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-156b8d7435dce1ace73b849e8b5bd78655fe11816f75429cc7f4b6bc7fed7b873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/766/119/1001</topic><topic>639/766/483/2802</topic><topic>639/925/927/481</topic><topic>Chemistry and Materials Science</topic><topic>Electric fields</topic><topic>Electron spin</topic><topic>Electronic devices</topic><topic>Electrons</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>Qubits (quantum computing)</topic><topic>Rabi frequency</topic><topic>Silicon</topic><topic>Spin-orbit interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilbert, Will</creatorcontrib><creatorcontrib>Tanttu, Tuomo</creatorcontrib><creatorcontrib>Lim, Wee Han</creatorcontrib><creatorcontrib>Feng, MengKe</creatorcontrib><creatorcontrib>Huang, Jonathan Y.</creatorcontrib><creatorcontrib>Cifuentes, Jesus D.</creatorcontrib><creatorcontrib>Serrano, Santiago</creatorcontrib><creatorcontrib>Mai, Philip Y.</creatorcontrib><creatorcontrib>Leon, Ross C. C.</creatorcontrib><creatorcontrib>Escott, Christopher C.</creatorcontrib><creatorcontrib>Itoh, Kohei M.</creatorcontrib><creatorcontrib>Abrosimov, Nikolay V.</creatorcontrib><creatorcontrib>Pohl, Hans-Joachim</creatorcontrib><creatorcontrib>Thewalt, Michael L. W.</creatorcontrib><creatorcontrib>Hudson, Fay E.</creatorcontrib><creatorcontrib>Morello, Andrea</creatorcontrib><creatorcontrib>Laucht, Arne</creatorcontrib><creatorcontrib>Yang, Chih Hwan</creatorcontrib><creatorcontrib>Saraiva, Andre</creatorcontrib><creatorcontrib>Dzurak, Andrew S.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilbert, Will</au><au>Tanttu, Tuomo</au><au>Lim, Wee Han</au><au>Feng, MengKe</au><au>Huang, Jonathan Y.</au><au>Cifuentes, Jesus D.</au><au>Serrano, Santiago</au><au>Mai, Philip Y.</au><au>Leon, Ross C. C.</au><au>Escott, Christopher C.</au><au>Itoh, Kohei M.</au><au>Abrosimov, Nikolay V.</au><au>Pohl, Hans-Joachim</au><au>Thewalt, Michael L. W.</au><au>Hudson, Fay E.</au><au>Morello, Andrea</au><au>Laucht, Arne</au><au>Yang, Chih Hwan</au><au>Saraiva, Andre</au><au>Dzurak, Andrew S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-demand electrical control of spin qubits</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nat. Nanotechnol</stitle><addtitle>Nat Nanotechnol</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>18</volume><issue>2</issue><spage>131</spage><epage>136</epage><pages>131-136</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Once called a ‘classically non-describable two-valuedness’ by Pauli, the electron spin forms a qubit that is naturally robust to electric fluctuations. Paradoxically, a common control strategy is the integration of micromagnets to enhance the coupling between spins and electric fields, which, in turn, hampers noise immunity and adds architectural complexity. Here we exploit a switchable interaction between spins and orbital motion of electrons in silicon quantum dots, without a micromagnet. The weak effects of relativistic spin–orbit interaction in silicon are enhanced, leading to a speed up in Rabi frequency by a factor of up to 650 by controlling the energy quantization of electrons in the nanostructure. Fast electrical control is demonstrated in multiple devices and electronic configurations. Using the electrical drive, we achieve a coherence time
T
2,Hahn
≈ 50 μs, fast single-qubit gates with
T
π/2
= 3 ns and gate fidelities of 99.93%, probed by randomized benchmarking. High-performance all-electrical control improves the prospects for scalable silicon quantum computing.
High-performance all-electrical control is a prerequisite for scalable silicon quantum computing. The switchable interaction between spins and orbital motion of electrons in silicon quantum dots now enables the electrical control of a spin qubit with high fidelity and speed, without the need for integrating a micromagnet.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36635331</pmid><doi>10.1038/s41565-022-01280-4</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8894-7383</orcidid><orcidid>https://orcid.org/0000-0001-7445-699X</orcidid><orcidid>https://orcid.org/0000-0001-7892-7963</orcidid><orcidid>https://orcid.org/0000-0002-7209-9180</orcidid><orcidid>https://orcid.org/0000-0002-8153-4893</orcidid><orcidid>https://orcid.org/0000-0003-0134-3657</orcidid><orcidid>https://orcid.org/0000-0002-8713-150X</orcidid><orcidid>https://orcid.org/0000-0001-7127-5982</orcidid><orcidid>https://orcid.org/0000-0002-2832-3237</orcidid><orcidid>https://orcid.org/0000-0003-1389-5096</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2023-02, Vol.18 (2), p.131-136 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_proquest_journals_2779611635 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 639/766/119/1001 639/766/483/2802 639/925/927/481 Chemistry and Materials Science Electric fields Electron spin Electronic devices Electrons Materials Science Nanotechnology Nanotechnology and Microengineering Quantum computing Quantum dots Qubits (quantum computing) Rabi frequency Silicon Spin-orbit interactions |
title | On-demand electrical control of spin qubits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A38%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-demand%20electrical%20control%20of%20spin%20qubits&rft.jtitle=Nature%20nanotechnology&rft.au=Gilbert,%20Will&rft.date=2023-02-01&rft.volume=18&rft.issue=2&rft.spage=131&rft.epage=136&rft.pages=131-136&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-022-01280-4&rft_dat=%3Cproquest_cross%3E2779611635%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2779611635&rft_id=info:pmid/36635331&rfr_iscdi=true |